首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A series of [3 x 3] Mn(II)(9), antiferromagnetically coupled, alkoxide-bridged, square grid complexes, derived from a group of "tritopic" dihydrazide ligands, is described. The outer ring of eight Mn(II) centers in the grids is isolated magnetically from the central Mn(II) ion, leading to an S = 0 ground state for the ring, and an S = 5/2 ground state overall in each case. Exchange in the Mn(II)(8) ring can be represented by a 1D chain exchange model. Rich electrochemistry displayed by these systems has led to the production of Mn(II)/Mn(III) mixed-oxidation-state grids by both electrochemical and chemical means. Structures are reported for [Mn(9)(2poap)(6)](C(2)N(3))(6).10H(2)O (1), [Mn(9)(2poap)(6)](2)[Mn(NCS)(4)(H(2)O)](2)(NCS)(8).10H(2)O (2), [Mn(9)(2poapz)(6)](NO(3))(6).14.5H(2)O (3), [Mn(9)(2popp)(6)](NO(3))(6).12H(2)O (4), [Mn(9)(2pomp)(6)](MnCl(4))(2)Cl(2).2CH(3)OH.7H(2)O (5), and [Mn(9)(Cl2poap)(6)](ClO(4))(9).7H(2)O (6). Compound 1 crystallized in the tetragonal system, space group P4(2)/n, with a = 21.568(1) A, c = 16.275(1) A, and Z = 2. Compound 2 crystallized in the triclinic system, space group P, with a = 25.043(1) A, b = 27.413(1) A, c = 27.538(2) A, alpha = 91.586(2) degrees, beta = 113.9200(9) degrees, gamma = 111.9470(8) degrees, and Z = 2. Compound 3 crystallized in the triclinic system, space group P, with a = 18.1578(12) A, b = 18.2887(12) A, c = 26.764(2) A, alpha = 105.7880(12) degrees, beta = 101.547(2) degrees, gamma = 91.1250(11) degrees, and Z = 2. Compound 4 crystallized in the tetragonal system, space group P4(1)2(1)2, with a = 20.279(1) A, c = 54.873(6) A, and Z = 4. Compound 5 crystallized in the tetragonal system, space group I, with a = 18.2700(2) A, c = 26.753(2) A, and Z = 2. Compound 6 crystallized in the triclinic system, space group P, with a = 19.044(2) A, b = 19.457(2) A, c = 23.978(3) A, alpha = 84.518(3) degrees, beta = 81.227(3) degrees, gamma = 60.954(2) degrees, and Z = 2. Preliminary surface studies on Au(111), with a Mn(II) grid complex derived from a sulfur-derivatized ligand, indicate monolayer coverage via gold-sulfur interactions, and the potential for information storage at high-density levels.  相似文献   

2.
The tritopic ligand 2poap self-assembles in the presence of Zn(NO(3))(2) and Fe(NO(3))(3) to form homoleptic [3 x 3] nonanuclear M(9) (M = Zn(II), Fe(III)) square grid structures and with Pb(ClO(4))(2) to form a dimerized linear trinuclear [Pb(3)](2) structure. Cl2poap and Cl2poapz form self-assembled homoleptic [3 x 3] Mn(II)(9) square grids with Mn(ClO(4))(2) and Mn(NO(3))(2), respectively, but an unusual incompletely metalated Fe(III)(5) square grid is formed on reaction of Cl2poap with Fe(ClO(4))(3). X-ray structures are reported for [Mn(9)(Cl2poap-2H)(6)](ClO(4))(6).10H(2)O (3), [Mn(9)(Cl2poapz-2H)(6)] (NO(3))(6).22H(2)O (4), [Zn(9)(2poap-2H)(3)(2poap-H)(3)](NO(3))(9).24H(2)O (5), [Pb(3)(2poap-2H) (ClO(4))(4)](2).8H(2)O (6), and [Fe(5)(Cl2poap-H)(6)](ClO(4))(9).34.5H(2)O (7). Compound 3 crystallized in the monoclinic system, space group P(-)1, with a = 18.179(1) A, b = 18.857(1) A, c = 25.871(2) A, alpha = 70.506(2) degrees, beta = 86.440(1) degrees, gamma = 75.175(2) degrees, and z = 2. Compound 4 crystallized in the monoclinic system, space group P(-)1, with a = 16.900(2) A, b = 20.02393) A, c = 25.663() A, alpha = 84.743(3) degrees, beta = 84.885(2) degrees, gamma = 67.081(2) degrees, and z = 2. Compound 5 crystallized in the monoclinic system, space group P(-)1, with a = 18.482(1) A, b = 18.774(1) A, c = 28.112(2) A, alpha = 104.020(1) degrees, beta = 97.791(1) degrees, gamma = 117.036(1) degrees, and z = 2. Compound 6 crystallized in the monoclinic system, space group P(-)1, with a = 10.0513(6) A, b = 11.0958(6) A, c = 17.334(1) A, alpha = 100.932(1) degrees, beta = 100.387(1) degrees, gamma = 94.565(1) degrees, and z = 2. Compound 7 crystallized in the monoclinic system, space group P(-)1, with a = 19.164(1) A, b = 19.587(2) A, c = 26.673(2) A, alpha = 76.430(2) degrees, beta = 78.834(2) degrees, gamma = 64.973(1) degrees, and z = 2. Compound 3 exhibits intramolecular antiferromagnetic exchange within the nonanuclear [Mn(9)(mu-O)(12)] grid structure (J = -4.6 cm(-1)), while the analogous nonanuclear complex [Fe(9)(2poap-2H)(6)](NO(3))(15).18H(2)O (8) is dominated by intramolecular antiferromagnetic coupling at high temperatures but exhibits a low-temperature feature indicative of additional ferromagnetic interactions. The isolated pentanuclear Fe(5) [4 + 1] square grid in 7, with distant Fe-Fe bridging, exhibits very weak antiferromagnetic coupling (J = -0.2 cm(-1)). M?ssbauer spectroscopy data are consistent with high-spin Fe(III)(9) and Fe(III)(5) structures.  相似文献   

3.
Structural, electrochemical, ESR, and H2O2 reactivity studies are reported for [Mn(dmptacn)Cl]ClO4 (1, dmptacn = 1,4-bis(2-pyridylmethyl)-1,4,7-triazacyclononane) and binuclear complexes of bis(pentadentate) ligands, generated by attaching 2-pyridylmethyl arms to each secondary nitrogen in bis(1,4,7-triazacyclononane) macrocycles and linked by ethyl (tmpdtne, [Mn2(tmpdtne)Cl2](ClO4)2.2DMF, 2), propyl (tmpdtnp, [Mn2(tmpdtnp)Cl2](ClO4)2.3H2O, 3), butyl (tmpdtnb, [Mn2(tmpdtnb)Cl2](ClO4)2.DMF.2H2O, 4), m-xylyl (tmpdtn-m-X, [Mn2(tmpdtn-m-X)-Cl2](ClO4)2, 5) and 2-propanol (tmpdtnp-OH, [Mn2(tmpdtnp-OH)Cl2](ClO4)2, 6) groups. 1 crystallizes in the orthorhombic space group P2(1)2(1)2(1) (No. 19) with a = 7.959(7) A, b = 12.30(1) A, and c = 21.72(2) A; 2, in the monoclinic space group P2(1)/c (No. 14) with a = 11.455(4) A, b = 15.037(6) A, c = 15.887(4) A, and beta = 96.48(2) degrees; 3, in the monoclinic space group P2(1)/c (No. 14) with a = 13.334(2) A, b = 19.926(2) A, c = 18.799(1) A, and beta = 104.328(8) degrees; and [Mn2(tmpdtnb)Cl2](ClO4)2.4DMF.3H2O (4'), in the monoclinic space group P2(1)/n (No. 14) with a = 13.361(3) A, b = 16.807(5) A, c = 14.339(4) A, and beta = 111.14(2) degrees. Significant distortion of the Mn(II) geometry is evident from the angle subtended by the five-membered chelate (ca. 75 degrees) and the angles spanned by trans donor atoms (< 160 degrees). The Mn geometry is intermediate between octahedral and trigonal prismatic, and for complexes 2-4, there is a systematic increase in M...M distance with the length of the alkyl chain. Cyclic and square-wave voltammetric studies indicate that 1 undergoes a 1e- oxidation from Mn(II) to Mn(III) followed by a further oxidation to MnIV at a significantly more positive potential. The binuclear Mn(II) complexes 2-5 are oxidized to the Mn(III) state in two unresolved 1e- processes [MnII2-->MnIIMnIII-->MnIII2] and then to the MnIV state [MnIII2-->MnIIIMnIV-->MnIV2]. For 2, the second oxidation process was partially resolved into two 1e- oxidation processes under the conditions of square-wave voltammetry. In the case of 6, initial oxidation to the MnIII2 state occurs in two overlapping 1e- processes as was found for 2-5, but this complex then undergoes two further clearly separated 1e- oxidation processes to the MnIIIMnIV state at +0.89 V and the MnIV2 state at +1.33 V (vs Fc/Fc+). This behavior is attributed to formation of an alkoxo-bridged complex. Complexes 1-6 were found to catalyze the disproportionation of H2O2. Addition of H2O2 to 2 generated an oxo-bridged mixed-valent MnIIIMnIV intermediate with a characteristic 16-line ESR signal.  相似文献   

4.
A series of trigonal bipyramidal pentanuclear complexes involving the alkoxo-diazine ligands poap and p3oap, containing the M(5)[mu-O](6) core is described, which form by a strict self-assembly process. [Co(5)(poap-H)(6)](ClO(4))(4).3H(2)O (1), [Mn(5)(poap-H)(6)](ClO(4))(4).3.5CH(3)OH.H(2)O (2), [Mn(5)(p3oap-H)(6)](ClO(4))(4).CH(3)CH(2)OH.3H(2)O (3), and [Zn(5)(poap-H)(6)](ClO(4))(4).2.5H(2)O (4) are homoleptic pentanuclear complexes, where there is an exact match between the coordination requirements of the five metal ions in the cluster, and the available coordination pockets in the polytopic ligand. [Zn(4)(poap)(poap-H)(3)(H(2)O)(4)] (NO(3))(5).1.5H(2)O (5) is a square [2 x 2] grid with a Zn(4)[mu-O](4) core, and appears to result from the presence of NO(3), which is thought to be a competing ligand in the self-assembly. X-ray structures are reported for 1, 4, and 5. 1 crystallized in the monoclinic system, space group P2(1)/n with a = 13.385(1) A, b = 25.797(2) A, c = 28.513(3) A, beta = 98.704(2) degrees, and Z = 4. 4 crystallized in the triclinic system, space group P1 with a = 13.0897(9) A, b = 18.889(1) A, c = 20.506(2) A, alpha = 87.116(1) degrees, beta = 74.280(2) degrees, gamma = 75.809(2) degrees, and Z = 2. 5 crystallized in the monoclinic system, space group P2(1)/n with a = 14.8222(7) A, b = 21.408(1) A, c = 21.6197(9) A, beta = 90.698(1) degrees, and Z = 4. Compounds 1-3 exhibit intramolecular antiferromagnetic coupling.  相似文献   

5.
The magnetic susceptibility and low-temperature magnetization curve of the [3 x 3] grid [Mn(III)4Mn(II)5(2poap-2H)6](ClO4)10.10 H2O (1) are analyzed within a spin Hamiltonian approach. The Hilbert space is huge (4,860,000 states), but the consequent use of all symmetries and a two-step fitting procedure nevertheless allows the best-fit determination of the magnetic exchange parameters in this system from complete quantum mechanical calculations. The cluster exhibits a total spin S = 1/2 ground state; the implications are discussed.  相似文献   

6.
A new polynucleating ligand, 1,2,4,5-tetrakis(1,4,7-triazacyclonon-1-ylmethyl)benzene (Ldur), has been prepared and characterized as its dodecahydrobromide salt. Addition of base to an aqueous solution of this salt and 4 molar equivalents (m.e.) of a Ni(II) salt produces a mixture of bi- and trinuclear complexes, which can be separated by cation-exchange chromatography (CEC) and crystallized as [Ni2Ldur](ClO4)(4).2H2O (1) and [Ni3Ldur(H2O)6](ClO4)(6).9H2O (2). The "full capacity" tetranuclear complex, [Ni4Ldur(H2O)12](ClO4)(8).8H2O (3), is obtained by slow addition of Ldur to a refluxing aqueous solution of excess Ni2+ ions, followed by CEC purification. Treatment of Ldur with 4 m.e. of a copper(II) salt produces exclusively the tetranuclear complex, [Cu4Ldur(H2O)8](ClO4)(8).9H2O (4), while reaction with only 2 m.e. of Cu2+ ions yields the binuclear complex, [Cu2Ldur](ClO4)(4).4H2O (5). The X-ray structures of complexes 1,2,4, and [Cu2Ldur](ClO4)(4).3H2O (5') have been determined; all are monoclinic, P2(1)/c: for 1, a = 9.497(3) A, b = 13.665(5) A, c = 19.355(6) A, beta = 100.57(2) degrees, V = 2469(1) A3, and Z = 2; for 2, a = 22.883(7) A, b = 15.131(6) A, c = 20.298(8) A, beta = 97.20(3) degrees, V = 6973(4) A3, and Z = 4; for 4, a = 16.713(7) A, b = 16.714(6) A, c = 14.775(11) A, beta = 108.24(5) degrees, V = 3920(4) A3, and Z = 2; and for 5', a = 9.5705(1) A, b = 13.0646(1) A, c = 20.1298(2) A, beta = 103.1618(8) degrees, V = 2450.81(4) A3, and Z = 2. The metal centers in 1 and 5' lie in distorted octahedral environments, each facially coordinated by two of the triamine rings of Ldur, the cation in each case being centrosymmetric. In 2, one of the nickel(II) centers is similarly sandwiched by two triamine rings, while the other two nickel(II) centers are each coordinated by a single triamine ring from the ligand, with their distorted octahedral coordination spheres each being completed by three water molecules. In 4, the four triamine rings of Ldur bind to separate copper(II) centers, with two water molecules occupying the remaining two sites of the distorted square pyramidal (SP) coordination spheres, the cation again being centrosymmetric.  相似文献   

7.
The structures and magnetic properties of self-assembled copper(II) clusters and grids with the "tritopic" ligands 2poap (a), Cl2poap (b), m2poap (c), Cl2pomp (d), and 2pomp (e) are described [ligands derived by reaction of 4-R-2,6-pyridinedicarboxylic hydrazide (R = H, Cl, MeO) with 2-pyridinemethylimidate (a-c, respectively) or 2-acetylpyridine (d, R = Cl; e, R = H)]. Cl2poap and Cl2pomp self-assemble with Cu(NO(3))(2) to form octanuclear "pinwheel" cluster complexes [Cu(8)(Cl2poap-2H)(4)(NO(3))(8)].20H(2)O (1) and [Cu(8)(Cl2pomp-2H)(4)(NO(3))(8)].15H(2)O (2), built on a square [2 x 2] grid with four pendant copper arms, using "mild" reaction conditions. Similar reactions of Cl2pomp and 2pomp with Cu(ClO(4))(2) produce pinwheel clusters [Cu(8)(Cl2pomp-2H)(4)(H(2)O)(8)](ClO(4))(8).7H(2)O (3) and [Cu(8)(2pomp-2H)(4)(H(2)O)(8)](ClO(4))(8) (4), respectively. Heating a solution of 1 in MeOH/H(2)O produces a [3 x 3] nonanuclear square grid complex, [Cu(9)(Cl2poap-H)(3)(Cl2poap-2H)(3)](NO(3))(9).18H(2)O (5), which is also produced by direct reaction of the ligand and metal salt under similar conditions. Reaction of m2poap with Cu(NO(3))(2) produces only the [3 x 3] grid [Cu(9)(m2poap-H)(2)(m2poap-2H)(4)](NO(3))(8).17H(2)O (6) under similar conditions. Mixing the tritopic ligand 2poap with pyridine-2,6-dicarboxylic acid (picd) in the presence of Cu(NO(3))(2) produces a remarkable mixed ligand, nonanuclear grid complex [Cu(9)(2poap-H)(4)(picd-H)(3)(picd-2H)](NO(3))(9).9H(2)O (7), in which aromatic pi-stacking interactions are important in stabilizing the structure. Complexes 1-3 and 5-7 involve single oxygen atom (alkoxide) bridging connections between adjacent copper centers, while complex 4 has an unprecedented mixed micro-(N-N) and micro-O metal ion connectivity. Compound 1 (C(76)H(92)N(44)Cu(8)O(50)Cl(4)) crystallizes in the tetragonal system, space group I, with a = 21.645(1) A, c = 12.950(1) A, and Z = 2. Compound 2 (C(84)H(88)N(36)O(44)Cl(4)Cu(8)) crystallizes in the tetragonal system, space group I, with a = 21.2562(8) A, c = 12.7583(9) A, and Z = 2. Compound 4 (C(84)H(120)N(28)O(66)Cl(8)Cu(8)) crystallizes in the tetragonal system, space group I4(1)/a, with a = 20.7790(4) A, c = 32.561(1) A, and Z = 4. Compound 7(C(104)H(104)N(46)O(56)Cu(9)) crystallizes in the triclinic system, space group P, with a = 15.473(1) A, b = 19.869(2) A, c = 23.083(2) A, alpha = 88.890(2) degrees, beta = 81.511(2) degrees, gamma = 68.607(1) degrees, and Z = 2. All complexes exhibit dominant intramolecular ferromagnetic exchange coupling, resulting from an orthogonal bridging arrangement within each polynuclear structure.  相似文献   

8.
A series of adamantane-shaped [Mn4O6]4+ aggregates has been prepared. Ligand substitution reactions of [Mn4O6(bpea)4](ClO4)4 (1) with tridentate amine and iminodicarboxylate ligands in acetonitrile affords derivative clusters [Mn4O6(tacn)4](ClO4)4 (4), [Mn4O6(bpea)2(dien)2](ClO4)4)(5), [Mn4O6(Medien)4](ClO4)4 (6), [Mn4O6(tach)4](ClO4)4 (7), [Mn4O6(bpea)2(me-ida)2] (8), [Mn4O6(bpea)2(bz-ida)2] (9), [Mn4O6(bpea)2((t)bu-ida)2] (10), and [Mn4O6(bpea)2((c)pent-ida)2] (11) generally on the order of 10 min with retention of core nuclearity and oxidation state. Of these complexes, only 4 had been synthesized previously. Characterization of two members of this series by X-ray crystallography reveals that compound 7 crystallizes as [Mn4O6(tach)4](ClO4)4 x 3CH3CN x 4.5H2O in the cubic space group Fmm and compound 11 crystallizes as [Mn4O6(bpea)2((c)pent-ida)2].7MeOH in the monoclinic space group C2/c. The unique substitution chemistry of 1 with iminodicarboxylate ligands afforded asymmetrically ligated complexes 8-11, the mixed ligand nature of which is most likely unachievable using self-assembly synthetic methods. A special feature of the iminodicarboxylate ligand complexes 8-11 is the substantial site differentiation of the oxo bridges of the [Mn4O6]4+ cores. While there are four site-differentiated oxo bridges in 8, the solution structural symmetry of 8H+ reveals essentially a single protonation isomer, in contrast to the observation of two protonation isomers for 1H+, one for each of the site-differentiated oxo bridges in 1. Magnetic susceptibility measurements on 4, 7, 8, and 9 indicate that each complex is overall ferromagnetically coupled, and variable-field magnetization data for 7 and 9 are consistent with an S = 6 ground state. Electrochemical analysis demonstrates that ligand substitution of bpea affords accessibility to the Mn(V)(Mn(IV))3 oxidation state.  相似文献   

9.
Transition-metal aqua complex salts [M(H2O)6]X2 (where M is Mn(II), Co(II), Ni(II), Zn(II), or Cd(II) and X is NO3-, Cl-, or ClO4-) can be dissolved in triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymers (Pluronics, such as P65) to form homogeneous liquid crystalline (LC) mesophases. However, the [Co(H2O)6]X2:P65 LC mesophases slowly undergo phase separation into a disordered ion-free phase and an ordered ion-rich LC mesophase. The phase separation also takes place in the two-salt systems [Co(H2O)6](NO3):[Co(H2O)6](ClO4)2:P65 in which the ion-free disordered domains separate out from the initially ordered homogeneous mesophase. The phase separation results in a physical mixture of a hexagonal nitrate-rich and cubic perchlorate-rich LC and disordered ion-free domains in the mixed salt systems. The driving force in the phase separation in the [Co(H2O)6]X2:P65 system is Co(II)-catalyzed aerobic oxidation of P65 into ester and/or other oxidation products. The separation of ions in the [Co(H2O)6](NO3)2:[Co(H2O)6](ClO4)2:P65 system is related to the mesostructures of the two-salt systems that are different, hexagonal in the [Co(H2O)6](NO3)2:P65 system and cubic in the [Co(H2O)6](ClO4)2:P65 system. There is no visible phase separation in the other transition-metal salt:P65 systems. The phase separation in the [Co(H2O)6]X2:P65 systems can also be eliminated by keeping the mesophase under a N2 atmosphere.  相似文献   

10.
New synthesis procedures are described to tetranuclear manganese carboxylate complexes containing the [Mn(4)O(2)](8+) or [Mn(4)O(3)X](6+) (X(-) = MeCO(2)(-), F(-), Cl(-), Br(-), NO(3)(-)) core. These involve acidolysis reactions of [Mn(4)O(3)(O(2)CMe)(4)(dbm)(3)] (1; dbm is the anion of dibenzoylmethane) or [Mn(4)O(2)(O(2)CEt)(6)(dbm)(2)] (8) with HX (X(-) = F(-), Cl(-), Br(-), NO(3)(-)); high-yield routes to 1 and 8 are also described. The X(-) = NO(3)(-) complexes [Mn(4)O(3)(NO(3))(O(2)CR)(3)(R'(2)dbm)(3)] (R = Me, R' = H (6); R = Me, R' = Et (7); R = Et, R' = H (12)) represent the first synthesis of the [Mn(4)O(3)(NO(3))](6+) core, which contains an unusual eta(1):mu(3)-NO(3)(-) group. Treatment of known [Mn(4)O(2)(O(2)CEt)(7)(bpy)(2)](ClO(4)) with HNO(3) gives [Mn(4)O(2)(NO(3))(O(2)CEt)(6)(bpy)(2)](ClO(4)) (15) containing a eta(1):eta(1):mu-NO(3)(-) group bridging the two body Mn(III) ions of the [Mn(4)O(2)](8+) butterfly core. Complex 7 x 4CH(2)Cl(2) crystallizes in space group P2(1)2(1)2(1) with (at -168 degrees C) a = 21.110(3) A, b = 22.183(3) A, c = 15.958(2) A, Z = 4, and V = 7472.4(3) A(3). Complex 15 x (3)/(2)CH(2)Cl(2) crystallizes in space group P2(1)/c with (at -165 degrees C) a = 26.025(4) A, b = 13.488(2) A, c = 32.102(6) A, beta = 97.27(1) degrees, Z = 8, and V = 11178(5) A(3). Complex 7 contains a [Mn(4)(mu(3)-O)(3)(mu(3)-NO(3))](6+) core (3Mn(III), Mn(IV)) as seen for previous [Mn(4)O(3)X](6+) complexes. Complex 15 contains a butterfly [Mn(4)(mu(3)-O)(2)](8+) core. (1)H NMR spectra have been recorded for all complexes reported in this work and the various resonances assigned. All complexes retain their structural integrity on dissolution in chloroform and dichloromethane. Magnetic susceptibility (chi(M)) data were collected on 12 in the 5-300 K range in a 10.0 kG (1 T) field. Fitting of the data to the theoretical chi(M) vs T expression appropriate for a [Mn(4)O(3)X](6+) complex of C(3)(v)() symmetry gave J(34) = -23.9 cm(-)(1), J(33) = 4.9 cm(-)(1), and g = 1.98, where J(34) and J(33) refer to the Mn(III)Mn(IV) and Mn(III)Mn(III) pairwise exchange interactions, respectively. The ground state of the molecule is S = 9/2, as found previously for other [Mn(4)O(3)X](6+) complexes. This was confirmed by magnetization data collected at various fields and temperatures. Fitting of the data gave S = 9/2, D = -0.45 cm(-1), and g = 1.96, where D is the axial zero-field splitting parameter.  相似文献   

11.
The complexes of general formula [ML]2[Mn(NCS)4](ClO4)2 (where M = Cu(II), Ni(II); L = N-dl-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene) were obtained and the crystal structures of both heteronuclear compounds were determined at 173 K. Complex [CuL]2[Mn(NCS)4](ClO4)2 (1) crystallizes in a monoclinic space group, C2/c, with a = 41.297(9) A, b = 7.571(2) A, c = 16.417(4) A, beta = 96.97(15) degrees, Z = 8, whereas complex [NiL]2[Mn(NCS)4](ClO4)2.H2O (2) crystallizes in a monoclinic space group, P2/c, with a = 21.018(5) A, b = 7.627(2) A, c = 16.295(4) A, beta = 104.47(1) degrees, Z = 4. The magnetic behaviour of (1) and (2) has been investigated over the temperature range 1.8-300 K. Complex (1) displays ferromagnetic coupling inside the trinuclear core of CuMnCu and compound (2) behaves like a mononuclear Mn(II) system. The magnetic properties of the second compound (2) with a similar trinuclear structure shows that Ni(II) ions have a diamagnetic character and a rather weak zero-field splitting at the central Mn(II) ion occurs. Finally, the magnitudes of the Cu(II)-M(II) interactions with M = Ni and Mn have been compared and qualitatively justified.  相似文献   

12.
The dicarboxylate group m-phenylenedipropionate (mpdp(2)(-)) has been used for the synthesis of four new Mn compounds of different nuclearities and oxidation states: [Mn(2)O(mpdp)(bpy)(2)(H(2)O)(MeCN)](ClO(4))(2) (3), [Mn(3)O(mpdp)(3)(py)(3)](ClO(4)) (4), [Mn(3)O(mpdp)(3)(py)(3)] (5), and [Mn(6)O(7)(mpdp)(3)(bpy)(3)](ClO(4)) (6). Compound 3 (2Mn(III)) contains a [Mn(2)(micro-O)](4+) core, whereas 5 (Mn(II), 2Mn(III)) and 4 (3Mn(III)) contain the [Mn(3)(micro(3)-O)](6+,7+) core, respectively. In all three compounds, the mpdp(2)(-) ligand is flexible enough to adopt the sites occupied by two monocarboxylates in structurally related compounds, without noticeable distortion of the cores. Variable-temperature magnetic susceptibility studies establish that 3 and 5 have ground-state spin values of S = 0 and S = 1/2, respectively. Compound 6 is a highly unusual 3Mn(III), 3Mn(IV) trapped-valent compound, and it is also a new structural type, with six Mn atoms disposed in a distorted trigonal antiprismatic topology. Its electronic structure has been explored by variable-temperature measurements of its dc magnetic susceptibility, magnetization vs field response, and EPR spectrum. The magnetic data indicate that it possesses an S = 3/2 ground state with an axial zero-field splitting parameter of D = -0.79 cm(-)(1), and this conclusion is supported by the EPR data. The combined results demonstrate the ligating flexibility of the mpdp(2)(-) ligand and its usefulness in the synthesis of a variety of Mn(x) species.  相似文献   

13.
Reactions of the unsymmetrical phenol ligand 2-(bis(2-pyridylmethyl)aminomethyl)-6-((2-pyridylmethyl)(benzyl)aminomethyl)-4-methylphenol with Mn(OAc)(2).4H(2)O or Mn(H(2)O)(6)(ClO(4))(2) in the presence of NaOBz affords the dimanganese(II) complexes 1(CH(3)OH), [Mn(2)(L)(OAc)(2)(CH(3)OH)](ClO(4)), and 2(H(2)O), [Mn(2)(L)(OBz)(2)(H(2)O)](ClO(4)), respectively. On the other hand, reaction of the ligand with hydrated manganese(III) acetate furnishes the mixed-valent derivative 3(H(2)O), [Mn(2)(L)(OAc)(2)(H(2)O)](ClO(4))( 2). The three complexes have been characterized by X-ray crystallography. 1(CH(3)OH) crystallizes in the monoclinic system, space group P2(1)/c, with a = 10.9215(6) A, b = 20.2318(12) A, c = 19.1354(12) A, alpha = 90 degrees, beta = 97.5310(10) degrees, gamma = 90 degrees, V = 4191.7 A(3), and Z = 4. 2(H(2)O) crystallizes in the monoclinic system, space group P2(1)/n, with a = 10.9215(6) A, b = 20.2318(12) A, c = 19.1354(12) A, alpha = 90 degrees, beta = 97.5310(10) degrees, gamma = 90 degrees, V = 4191.7 A(3), and Z = 4. 3(H(2)O) crystallizes in the monoclinic system, space group P2(1)/c, with a = 11.144(6) A, b = 18.737(10) A, c = 23.949(13) A, alpha = 90 degrees, beta = 95.910(10) degrees, gamma = 90 degrees, V = 4974(5) A(3), and Z = 4. Magnetic measurements revealed that the three compounds exhibit very similar magnetic exchange interactions -J = 4.3(3) cm(-)(1). They were used to establish tentative magneto-structural correlations which show that for the dimanganese(II) complexes -J decreases when the Mn-O(phenoxo) distance increases as expected from orbital overlap considerations. For the dimanganese(II,III) complexes, crystallographic results show that the Mn(II)-O(phenoxo) and Mn(III)-O(phenoxo) bond lengths are inversely correlated. An interesting magneto-structural correlation is found between -J and the difference between these bond lengths, delta(Mn)(-)(O) = d(Mn)()II(-)(O) - d(Mn)()III(-)(O): the smaller this difference, the larger -J. Electrochemical studies show that the mixed-valence state is favored in 1-3 by ca. 100 mV with respect to analogous complexes of symmetrical ligands, owing to the asymmetry of the electron density as found in the analogous diiron complexes.  相似文献   

14.
The reaction of [Mn(dmptacn)OH(2)](2+) and [Ni(dmptacn)OH(2)](2+) (dmptacn = 1,4-bis(2-pyridylmethyl)-1,4,7-triazacyclononane) with each cyano ligand on ferricyanide results in the assembly of heteropolynuclear cations around the cyanometalate core and reduction of Fe(III) to Fe(II). In [[Mn(dmptacn)CN](6)Fe][ClO(4)](8) x 5H(2)O (1) and [[Ni(dmptacn)CN](6)Fe][ClO(4)](8) x 7H(2)O (2), ferrocyanide is encapsulated by either six Mn(II) or Ni(II) dmptacn moieties. These same products are obtained when ferrocyanide salts are used in the synthesis instead of ferricyanide. A binuclear complex, [[Mn(dmptacn)](2)CN][ClO(4)](3) (3), has also been formed from KCN and [Mn(dmptacn)OH(2)](2+). For both Mn(II) and Ni(II), the use of the pentadentate dmptacn ligand facilitates the formation of discrete cations in preference to networks or polymeric structures. 1 crystallizes in the trigonal space group R3 macro (No. 148) with a = 30.073(3) A, c = 13.303(4) A, and Z = 3 and is composed of heptanuclear [[Mn(dmptacn)CN](6)Fe](8+) cations whose charge is balanced by perchlorate counteranions. Weak H-bonding interactions between neighboring heptanuclear cations and some perchlorate counterions generate an infinite 1D chain of alternating [[Mn(dmptacn)CN](6)Fe](8+) and ClO(4)(-) ions running along the c-axis. Complex 3 crystallizes in the orthorhombic space group Pbcn (No. 60) with a = 16.225(3) A, b = 16.320(2) A, c = 18.052(3) A, and Z = 8 and is composed of binuclear [[Mn(dmptacn)](2)CN](3+) cations in which the cyano-bridged Mn(II) centers are in a distorted trigonal prismatic geometry. Variable temperature magnetic susceptibility measurements have revealed the presence of a weak ferromagnetic interaction between the paramagnetic Mn(II) centers in 1, mediated either by the -NC-Fe-CN- bridging units or by Mn-NH...ClO(4-)...NH-Mn intercluster pathways.  相似文献   

15.
Reactions of the rhombic [MnII2 MnIII2 (hmp)6]4+ complex in acetonitrile with simple carboxylate ligands yield (i) three new isolated [Mn4] complexes, namely [Mn4(hmp)6(CH3COO)2(H2O)2](ClO4)2.4H2O (1), [Mn4(hmp)6(CCl3COO)2(H2O)2](ClO4)2 (2) and [Mn4(hmp)6(C6H5COO)2(H2O)2](ClO4)2.4CH3CN.2H2O (3) in the presence of either bulky carboxylate or of an excess of Mn(II) source; and (ii) two 1D arrangements of [Mn4] complexes connected through double syn-syn carboxylate bridges when using acetate and chloroacetate, namely {[Mn4(hmp)6(CH3COO)2](ClO4)2.H2O}n (4) and {[Mn4(hmp)6(ClCH2COO)2](ClO4)2.2H2O}n (5). The assembly of such building blocks can thus be controlled by an adequate choice of the bridging anion. As expected, the isolated [Mn4] complexes behave as Single-Molecule Magnets as shown by the study of their static and dynamic magnetic properties. Detailed magnetic studies both on polycrystalline samples and single crystals show that the chain compounds are isolated antiferromagnetic chains. The slow relaxation of their staggered magnetization has been studied thanks to finite-size effects induced by the intrinsic defects of the material  相似文献   

16.
Reaction of Mn(ClO4)2 with di-pyridyl ketone oxime, (2-py)2C=NOH, gives the novel cluster [Mn(II)4Mn(III)6Mn(IV)2(mu4-O)2(mu3-O)4(mu3-OH)4(mu3-OCH3)2(pko)12](OH)(ClO4)3 1. It is the only example of a 24-MC-8, and the first metallacrown with ring metal ions in three different oxidation states. Magnetic measurements show antiferromagnetic behavior.  相似文献   

17.
A novel Cu(II)-Mn(II) hexanuclear complex of formula [[MnCuL](3)(tma)](ClO(4))(3).8H(2)O [H(2)L = macrocyclic Robson proligand; H(3)tma = trimesic acid] has been obtained by connecting three heterobinuclear [Cu(II)Mn(II)L](2+) cationic species through the trimesate anion. The complex exhibits a C(3) rotational symmetry, imposed by the geometry of the bridging ligand. The interaction within each Mn(II)-Cu(II) pair is antiferromagnetic (J = -16.7 cm(-1)). A weak ferromagnetic coupling among the three S = 2 resulting spins through the tricarboxylato bridge leads to a S = 6 ground spin state, for which the spin polarization mechanism is responsible.  相似文献   

18.
19.
The "anti-crown" B-hexamethyl 9-mercuracarborand-3 (1) was shown to complex halide ions (I-, Br-, Cl-) in an eta(3)-sandwich fashion. Symmetry-allowed interactions of the filled halide ion p-orbitals and the corresponding empty mercury p-orbitals result in three equivalent p(Hg)-p(halide)-p(Hg) three-center two-electron bonds and a sandwich structure. The molecular structures of [Li.(H(2)O)(4)][1(2).I].2CH(3)CN, MePPh(3)[1(2).Br].((CH(3))(2)CO)(2).(H(2)O)(2), and PPN[1(2).Cl] were determined by single-crystal X-ray diffraction studies. Compound [Li.(H(2)O)(4)][1(2).I].2CH(3)CN crystallized in the triclinic space group P-1, a = 13.312(8) A, b = 13.983(9) A, c = 13.996(9) A, alpha = 61.16(2) degrees, beta = 82.34(2) degrees, gamma = 86.58(2) degrees, V = 4365(2) A(3), Z = 1, R = 0.063, and R(w) = 0.171. Compound MePPh(3)[1(2).Br].((CH(3))(2)CO)(2).(H(2)O)(2) crystallized in the monoclinic space group C2/c, a = 24.671(8) A, b = 17.576(6) A, c = 26.079(8) A, beta = 106.424(6) degrees, V = 10847(6) A(3), Z = 8, R = 0.0607, and R(w) = 0.1506. Compound PPN[1(2).Cl] crystallized in the monoclinic space group C2/m, a = 37.27(2) A, b = 29.25(1) A, c = 10.990(4) A, beta = 100.659(7) degrees, V = 11774(8) A(3), Z = 4, R = 0.0911, and R(w) = 0.2369.  相似文献   

20.
Du ZY  Prosvirin AV  Mao JG 《Inorganic chemistry》2007,46(23):9884-9894
Hydrothermal reactions of manganese(II) salts with m-sulfophenylphosphonic acid (m-HO3S-Ph-PO3H2, H3L) and 1,10-phenanthroline (phen) led to six novel manganese(II) sulfonate-phosphonates, namely, [Mn2(HL)2(phen)4][Mn2(HL)2(phen)4(H2O)](2).6H2O (1), [Mn4(L)2(phen)8(H2O)2][ClO4](2).3H2O (2), [Mn(phen)(H2O)4]2[Mn4(L)4(phen)4].10H2O (3), [Mn6(L)4(phen)8(H2O)2].4H2O (4), [Mn6(L)4(phen)8(H2O)2].24H2O (5), and [Mn6(L)4(phen)6(H2O)4].5H2O (6). The structure of 1 contains two types of dinuclear manganese(II) clusters, and 2-3 exhibit two types of tetranuclear manganese(II) cluster units. 4-5 feature two different types of isolated hexanuclear manganese(II) clusters, whereas the hexanuclear manganese(II) clusters in 6 are bridged by sulfonate-phosphonate ligands into a 1D chain. Magnetic property measurements indicate that there exist weak antiferromagnetic interactions between magnetic centers in all six compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号