首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A polymeric manganese(II) complex with the general formula [Mn(O2CCH2NH2CH2CO2)2(H2O)2]n from reaction of iminodiacetatic acid and manganese(II) perchlorate under nitrogen in water, was synthesized and characterized. The structure of the complex was determined using single‐crystal X‐ray diffraction, elemental analysis, IR and UV‐vis spectra. This complex exhibited excellent catalytic activity and selectivity for oxidation of various alcohols and sulfides to the corresponding aldehydes/ketone and sulfoxides using urea hydrogen peroxide and oxone (2KHSO5·KHSO4·K2SO4), respectively, as oxidants under air at room temperature. The easy preparation, mild reaction conditions, high yields of the products, short reaction time, no over‐oxidation products, high selectivity and inexpensive system make this catalytic system a useful method for oxidizing various alcohols and sulfides. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
By using a dimeric ruthenium complex in combination with tert‐butyl hydrogen peroxide (TBHP) as stoichiometric oxidant, a mild and efficient protocol for the oxidation of secondary benzylic alcohols was obtained, thereby giving the corresponding ketones in high yields within 4 h. However, in the oxidation of aliphatic alcohols, the TBHP protocol suffered from low conversions owing to a competing Ru‐catalyzed disproportionation of the oxidant. Gratifyingly, by switching to Oxone (2 KHSO5 ? KHSO4 ? K2SO4 triple salt) as stoichiometric oxidant, a more efficient and robust system was obtained that allowed for the oxidation of a wide range of aliphatic and benzylic secondary alcohols, giving the corresponding ketones in excellent yields. The mechanism for these reactions is believed to involve a high‐valent RuV–oxo species. We provide support for such an intermediate by means of mechanistic studies.  相似文献   

3.
A new high‐yielding, operationally simple, solvent‐free, and mild method for preparation of pyrazolines, tetrahydrocarbazoles, and indoles has been developed using KHSO4 · H2O impregnated on SiO2. The reactions have been probed under microwave irradiation (MWI), and ultrasonic and thermal conditions, employing different solid supports. The data revealed that KHSO4 · H2O impregnated on SiO2 under MWI provides the best yields in a shorter time under solvent‐free reaction conditions.  相似文献   

4.
Oxone® (2KHSO5·KHSO4·K2SO4) in the presence of mer-tris[(2-oxazolinyl)phenolato]manganese(III), Mn(phox)3, as catalyst under biphasic reaction conditions (CH2Cl2/H2O) and tetra-n-butylammonium bromide as phase transfer agent efficiently oxidises alcohols to their corresponding aldehydes and ketones at room temperature with very short reaction times (5 min) and good to quantitative yields.  相似文献   

5.
The commercial oxidant “oxone” (2KHSO4·K2SO4·KHSO4) has been found to be a superior reagent for the gamma oxidation of dienyl ethers to axial gamma-hydroxy enones.  相似文献   

6.
A combination of acetic anhydride, H2SO4-nano silica, wet-SiO2 (60 %), and K2Cr2O7 as a new oxidizing system for the selective oxidation of different types of alcohols to the corresponding aldehydes and ketones at room temperature under solvent-free conditions is introduced. Mild reaction conditions, high yields of the products, short reaction time, no further oxidation to the corresponding carboxylic acid, and easy work-up make this new system a useful method for oxidizing alcohols.  相似文献   

7.
Tetraethylammonium chlorochromate(VI), Et4N[CrO3Cl] is easily synthesized in nearly quantitative yield using a direct reaction of chromium(VI) oxide and tetraethylammonium chloride and characterized by elemental analysis, IR, UV/Visible, 1H-NMR and 13C-NMR techniques and single-crystal X-ray diffraction analysis (monoclinic system, space group C2(#5), with a = 12.023(3), b = 7.998(2), c = 14.527(4) Å, β = 114.187(4)°, V = 1274.4(6) Å3 and Z = 4). X-ray data determined the CH ··· O hydrogen bond that forms between the ethyl hydrogen of the cation and oxygen of the anion. This compound is a versatile reagent for efficient and selective oxidation of organic substrates, in particular for alcohols to their corresponding aldehydes or ketones, under mild conditions.  相似文献   

8.
The oxidation of alkanes to ketones and lactones by Oxone® (KHSO4×K2SO4×2KHSO5) catalyzed by manganese porphyrins has been studied in an anhydrous two-phase (solid Oxone®/DCE solution) catalytic system. Under the experimental conditions adopted, i.e., an excess of Oxone® over the organic substrate and catalytic amount of Mn(TDCPP)Cl, almost complete hydrocarbon conversions are obtained. Acyclic alkanes give ketones as main oxygenated product whereas cyclic alkanes give mainly lactones together with minor amounts of alcohols and ketones. The overall process leading to lactones involves two subsequent manganese porphyrin catalyzed oxidative steps and a stoichiometric reaction involving monopersulfate and the intermediate ketone. The lack of a water phase and of strong acids prevents the hydrolysis of the lactones formed. The products are obtained in yields ranging from low to fair depending on the nature of substrate, catalyst, and on phase transfer agent concentration.  相似文献   

9.
Two new silver(I) complexes ((tptz)Ag2(NO3)2 and [Ag5(tptz)4](NO3)5) with 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) have been synthesized and characterized by X-ray diffraction, elemental analysis, 1H NMR, IR, fluorescence, UV–Vis spectroscopy and electrochemistry. Oxidation of alcohols to their corresponding aldehydes and ketones was conducted with one of the Ag complexes as a catalyst, soluble enough in organic solvent, using oxone (2KHSO5·KHSO4·K2SO4) as an oxidant under biphasic reaction conditions (CH2Cl2/H2O) and tetra-n-butylammonium bromide as phase transfer agent under air at room temperature.  相似文献   

10.
We show that the dirhodium(II) tetraamidinate complex Rh2(Msip)4 efficiently catalyzes the oxidation of activated secondary alcohols at only 0.1 mol% loading. In this approach, we oxidized various benzylic, allylic and propargylic alcohols to the corresponding carbonyl compounds under mild aqueous conditions using the inexpensive oxidant T‐HYDRO® (70 wt% aqueous tert‐butyl hydroperoxide). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The oxidation of benzylic alcohols and aldehydes by NaBrO3 is efficiently promoted in the presence of NaHSO4 · H2O. All reactions were performed under mild and completely heterogeneous conditions in good to high yields.  相似文献   

12.
The catalytic activity of dioxidobis{2-[(E)-p-tolyliminomethyl]phenolato}molybdenum(VI) complex was studied, for the first time, in the selective oxidation of various primary and secondary alcohols using tert-BuOOH as oxidant under organic solvent-free conditions at room temperature. The effect of different solvents was studied in the oxidation of benzyl alcohol in this catalytic system. It was found that, under organic solvent-free conditions, the catalyst oxidized various primary and secondary alcohols to their corresponding aldehyde or ketone derivatives with high yield. The effects of other parameters such as oxidant and amount of catalyst were also investigated. Among different oxidants such as H2O2, NaIO4, tert-BuOOH, and H2O2/urea, tert-BuOOH was selected as oxygen donor in the oxidation of benzyl alcohol. Also, it was found that oxidation of benzyl alcohol required 0.02 mmol catalyst for completion. Dioxomolybdenum(VI) Schiff base complex exhibited good catalytic activity in the oxidation of alcohols with tert-BuOOH under mild conditions. In this catalytic system, different primary alcohols gave the corresponding aldehydes in good yields without further oxidation to carboxylic acids.  相似文献   

13.
The KHSO4-Na2SO3 system is found to be simple and inexpensive for reductive elimination of halogens (Br, I) from the corresponding halophenols under reflux conditions in dry methanol. Under similar conditions the reaction is sluggish with chlorophenols.  相似文献   

14.
The effects of ammonium sulfate aerosols on the kinetics of the hydroxyl radical reactions with C1–C6 aliphatic alcohols have been investigated using the relative rate technique. P‐xylene was used as a reference compound for the C2–C6 aliphatic alcohols study, and ethanol was used as a reference compound for the methanol study. Two different aerosol concentrations that are typical of polluted urban conditions were tested. The total surface areas of aerosols were 1400 μm2 cm?3 (condition I) and 3400 μm2 cm?3 (condition II). Results indicate that ammonium sulfate aerosols promote the ethanol/OH radical and 1‐propanol/OH radical reactions as compared to the p‐xylene/OH radical reaction. The relative rate of the ethanol/·OH reaction versus the p‐xylene/·OH reaction increased from 0.19 ± 0.01 in the absence of aerosols to 0.24 ± 0.01 and 0.26 ± 0.02 under aerosol conditions I and II, respectively. The relative rate of the 1‐propanol/·OH reaction versus the p‐xylene/·OH reaction increased from 0.45 ± 0.03 in the absence aerosols to 0.56 ± 0.02 and 0.55 ± 0.03 under aerosol conditions I and II, respectively. However, significant changes in the relative rates of the 1‐butanol/·OH, 1‐pentanol/·OH, and 1‐hexanol/·OH reactions versus the p‐xylene/·OH reaction were not observed for either aerosol concentration. The relative rates of the methanol/·OH reaction versus the ethanol/·OH reaction were identical in the absence and presence of aerosols. These results indicate that ammonium sulfate aerosols promote the methanol/·OH reaction as much as the ethanol/·OH reaction (as compared to the p‐xylene/·OH reaction). © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 422–430, 2001  相似文献   

15.
The mononuclear complex [Mn(tptz)(CH3COO)(OH2)2]NO3 (1) was investigated by electrospray ionization mass spectrometry in aqueous solution at pH 4.5. Electrospray ionization mass spectrometry shows that mononuclear and dinuclear manganese cationic species are present in solution, probably in equilibrium with neutral 1. An experiment showed that the most important reaction in the presence of oxone (2KHSO5·KHSO4·K2SO4) is decoordination.  相似文献   

16.
Cationic crosslinking reactions of poly(allenyl ether)s having oligo(oxyethylene) moieties prepared by the radical polymerization of the corresponding allenyl ethers were carried out under some varied reaction conditions. For instance, a crosslinked polymer was obtained in 82% yield by the treatment of poly(ethylene glycol methyl allenyl ether) ( 1a ) with 1.2 mol% of BF3·OEt2 ( 2 ) under high concentration in dichloromethane (46 wt %). The gels obtained showed good swelling properties in water, alcohols, and polar organic solvents such as dichloromethane. In particular, the degrees of swelling of these gels in aqueous sodium chloride (1M) were quite similar to those in ion-free water, indicating that these gels served as nonionic hydrogels. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
The aerobic oxidation of benzylic alcohols to their corresponding aldehydes was performed in a RuCl3 · 3H2O–dicyclohexylamine (DCHA) catalyst system under ambient atmosphere at room temperature. It is noteworthy that the RuCl3 · 3H2O–DCHA system displayed a preference for the primary versus secondary benzylic alcohols in both intermolecular and intramolecular competition experiments.  相似文献   

18.
A water-soluble catalyst based on a silicotungstate polyoxometalate, K8[β-SiW11O39] · 14H2O, was developed for the oxidation of pyridines and alcohols with hydrogen peroxide. The reactions were carried out in water, and good yields of the corresponding heterocyclic N-oxides and ketones were obtained under relatively mild conditions. The catalyst could be easily recovered by extraction with ethyl acetate and reused several times.

Supplemental materials are available for this article. Go to the publisher's online edition of Synthetic Communications® to view the free supplemental file.  相似文献   

19.
In this paper, we present the synthesis of Au nanoparticles supported on nanosilica thiol based dendrimer, nSTDP. The catalyst was prepared by reduction of HAuCl4 with NaBH4 in the presence of nSTDP. The resulting Aunp–nSTDP materials were characterized by FT–IR and UV–vis spectroscopic methods, SEM, TEM, TGA, XPS and ICP analyses. The characterization of the catalyst showed that Au nanoparticles with the size of 2–6 nm are homogeneously distributed on the nSTDP dendrimer with a catalyst loading of about 0.19 mmol/g of catalyst. The Aunp–nSTDP catalyst was used in the oxidation of alcohols with tert–butyl hydroperoxide (TBHP) as oxidant. The influence of vital reaction parameters such as solvent, oxidant and amount of catalyst on the oxidation of alcohols was investigated. These reactions were best performed in an acetonitrile/water mixture (3:2) in the presence of 0.76 mol% of the catalyst on the basis of the Au content at 80 °C under atmospheric pressure of air to afford the desired products in high yields (80–93% for benzyl alcohols). The Aunp–nSTDP catalyst exhibited a high selectivity toward the corresponding aldehyde and ketone (up to 100%). Reusabiliy and stability tests demonstrated that the Aunp–nSTDP catalyst can be recycled with a negligible loss of its activity. Also this catalytic exhibited a good chemoselectivity in the oxidation of alcohols.  相似文献   

20.
Selective and controlled aerobic oxidation of activated benzyl alcohols to the corresponding aldehydes is achieved in refluxing CH3CN using catalytic amounts of MoO2Cl2(L)2 where L is DMSO, DMF or THF. The catalysis reactions are possible under open air in the absence of any other external co‐oxidants. However, bubbling of oxygen to the reaction mixture is useful in making the catalysis reaction sustained. Both activated and deactivated varieties of α‐substituted benzyl alcohols (secondary alcohols) give ketones in the same reaction conditions. The inexpensive catalyst is selective towards activated primary benzyl alcohols and also, being mild, stops the oxidation at the aldehyde stage, making it synthetically useful. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号