首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We have applied an electrophoresis-assisted open-tubular LC-MS method for analyzing intact lipopolysaccharides (LPSs) from Haemophilus influenzae strain RM118 (Rd). We were able to obtain structural information on both core oligosaccharides (OSs) and the lipid A moiety including the sialylation, glycylation, and the distribution of fatty acid residues on the disaccharide backbone of lipid A. The fragmentation patterns of sodiated and protonated LPS molecules were investigated for determining the location of sialic acid. It was found that the tandem mass spectra of sodiated ions provided unambiguous evidence of both sialylated lactose and sialylated lacto-N-neotetraose. In contrast, the fragment ions of protonated ions only offered the evidence for the existence of sialylated lacto-N-neotetraose. The lipid A of Gram-negative bacteria, as the principal endotoxic component of LPS, plays a major role in the pathogenesis of bacterial infections. We have previously characterized lipid A species after mild acid hydrolysis of LPS during which lipid A precipitates. In this study, intact LPS was directly introduced to a tandem mass spectrometer. In-source dissociation strategy was employed, followed by multiple-stage MS/MS on the ions originating from the lipid part to obtain structural information. This is the first time that the structure of lipid A of H. influenzae was characterized by MS/MS on intact LPS molecules without any prior chemical modifications. In the same way information on the OS can be obtained by MS/MS by focusing on ions originating from core OS.  相似文献   

2.
《中国化学快报》2022,33(11):4808-4816
Simple saccharides have a variety of biological functions, but their structural diversity and inherent structural features pose a major challenge for rapid analysis. In this work, we developed a derivative-free and ion mobility-free method for the rapid analysis of monosaccharides and disaccharides using paper spray tandem mass spectrometry. Trimeric cluster ions consisting of saccharide analytes, ligands and transition metal ions are used as precursor ions. We defined the R-value as the ratio of the intensity of the product ion that loses one molecule of ligand over the intensity of the product ion that loses one molecule of saccharide via collision induced dissociation (CID). The species and conformation of simple saccharides can be easily differentiated by calculating this R-value. With the capability of directly analyzing clinical samples using paper spray ionization, our method can be used to rapidly quantify the molar ratio of galactose to glucose in dried plasma samples to aid in the diagnosis of galactosemia. The analytical strategy provided herein has good potential to be applied to a wide range of saccharide analysis applications in the future.  相似文献   

3.
Bordetella bronchiseptica is a respiratory pathogen in mammal species and its cell surface lipopolysaccharide-endotoxin is a potent virulence factor. In order to better characterize the endotoxin structure to virulence relationships, we studied the lipid A structures of B. bronchiseptica isolates from human and rabbit origins as a function of their virulence phases. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been widely used for the structural characterization of bacterial endotoxins and their lipid A moieties. This method combined with chemical analytical methods proved to be essential for the characterization of small samples and discrete but essential structural modifications. The occurrence of palmitate (C(16)) in the B. bronchiseptica lipid A structures is shown for the first time at two sites. Their presence was also demonstrated for the first time in correlation with the virulence phase of B. bronchiseptica clinical isolates. The recently identified glucosamine modifications of Bordetella lipids A are also reported in these isolates.  相似文献   

4.
The structural variations in the rough-type endotoxins [lipopolysaccharides (LPSs)] of Shigella sonnei mutant strains (S. sonnei phase II-4303, R41, 562H and 4350) were investigated by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and tandem MS. A series of S. sonnei mutants had previously been the subject of analytical studies on the biosynthesis of heptose components in the core oligosaccharide region of LPSs. This study gives a complete overview on the structures of the full core and lipid A of S. sonnei mutant strains by MS. We found that the LPSs of the isogenic rough mutants were formed in a step-like manner containing 0:1:2:3 heptose in the deep core region of 4350, 562H, R41 and 4303, respectively, and the longest LPS from the mutant S. sonnei 4303 contained also five hexoses. The structural variations in the lipid A moiety and in the oligosaccharide part of the intact LPS were followed by MALDI-TOF-MS/MS. For the dissolution and the ionization of the samples, 2,5-dihydroxybenzoic acid in citric acid solution was applied as matrix. The detailed evaluation of the mass spectra indicates heterogeneity in the lipid part due to the differences in the phosphate and fatty acid composition.  相似文献   

5.
The characteristics of lipid assemblies are important for the functions of biological membranes. This has led to an increasing utilization of molecular dynamics simulations for the elucidation of the structural features of biomembranes. We have applied the self-organizing map (SOM) to the analysis of the complex conformational data from a 1-ns molecular dynamics simulation of PLPC phospholipids in a membrane assembly. Mapping of 1.44 million molecular conformations to a two-dimensional array of neurons revealed, without human intervention, the main conformational features in hours. Both the whole molecule and the characteristics of the unsaturated fatty acid chains were analyzed. All major structural features were easily distinguished, such as the orientational variability of the headgroup, the mainly trans state dihedral angles of the sn-1 chain, and both straight and bent conformations of the unsaturated sn-2 chain. Furthermore, presentation of the trajectory of an individual lipid molecule on the map provides information on conformational dynamics. The present results suggest that the SOM method provides a powerful tool for routinely gaining rapid insight to the main molecular conformations as well as to the conformational dynamics of any simulated molecular assembly without the requirement of a priori knowledge.  相似文献   

6.
Typical bacterial glycoconjugates are known to stimulate immunological systems of higher animals and thereby play important roles in the primary defense of animals against bacterial infection. Lipopolysaccharide (LPS) of gram‐negative bacteria is a representative of such glycoconjugates. LPS was first discovered as a potent bacterial toxin and named endotoxin but was soon found to exhibit immunostimulating activity. By the use of our synthetic pure preparations, the lipophilic partial structure of LPS, designated lipid A, proved to be the active entity responsible for both endotoxic and immunostimulating activities of LPS. This paper deals with our recent chemical synthesis and functional study of lipid A and related compounds. Synthesis is described of its various structural analogues, radio‐labeled compound and Re‐type LPS that contains two additional sugar moieties linked to lipid A.  相似文献   

7.
Lipopolysaccharides (LPS), also called "endotoxins", are outer-membrane constituents of Gram-negative bacteria. Lipopolysaccharides play a key role in the pathogenesis of "septic shock", a major cause of mortality in the critically ill patient. We had earlier shown that small molecules bind and neutralize LPS if they contain (i) two protonatable cationic groups separated by a distance of approximately 14 A to facilitate interactions with the phosphate moieties on the lipid Angstrom component of LPS and (ii) a long-chain aliphatic hydrocarbon to promote hydrophobic interactions. In an effort to identify optimal scaffolds possessing the above structural requirements, we now present an evaluation of a rationally designed combinatorial library in which the elements of the scaffold are systematically varied to maximize sampling of chemical space. Leads obtained via molecular analyses of the screening results were resynthesized and evaluated in greater detail with regard to the affinity of the interaction with LPS, as well as neutralization of endotoxicity in in vitro assays. The examination of a moderately sized 6 x 6 x 15 (540-membered) focused library allowed the assessment of the structural contributions to binding by the long-chain aliphatic tails, distance between charged amino groups, and potential aromatic CH-pi or OH-pi interactions. These findings are of value in further iterations of design and development of specific and potent endotoxin sequestrants.  相似文献   

8.
肿瘤的红外光谱分析研究进展*   总被引:5,自引:0,他引:5  
高体玉  慈云祥  李峻 《化学进展》2000,12(3):346-353
本文综述Fourier 变换红外光谱在生物体系中的应用研究进展。重点介绍肿瘤细胞和组织的红外光谱学研究内容、谱学特点及其分析方法研究进展。对应用红外光谱检测肿瘤的前景进行了展望。  相似文献   

9.
《Analytical letters》2012,45(9):949-967
This article presents the most recent research in analytical chemistry concerning the development of rapid methodologies covering the period from 2009 up until today. In this context, different useful analytical methods have been developed based mainly on typical techniques such as gas chromatography, liquid chromatography, mass spectrometry, electrophoresis, electroanalytical chemistry, and biosensors. The analytical features of these methods have allowed the analysis of samples of different natures, such as environmental, food, pharmaceutical, and biological type, in which wide classes of analytes are promptly determined. The main advantages of these methods are included and discussed in this review regarding novelty, rapidity, sensitivity, selectivity, and costs. It is concluded that the development of rapid methods is still a growing trend in analytical chemistry and that gas- and liquid-chromatography mainly coupled to different modes of mass spectrometry are the most common analytical techniques applied today. Regarding the matrices analyzed, most of the methods have been developed for food analysis, followed by biological and environmental matrices.  相似文献   

10.
Gram-negative bacterial cell surface component lipopolysaccharide (LPS) and its active principle, lipid A, exhibit immunostimulatory effects and have the potential to act as adjuvants. However, canonical LPS acts as an endotoxin by hyperstimulating the immune response. Therefore, LPS and lipid A must be structurally modified to minimize their toxic effects while maintaining their adjuvant effect for application as vaccine adjuvants. In the field of chemical ecology research, various biological phenomena occurring among organisms are considered molecular interactions. Recently, the hypothesis has been proposed that LPS and lipid A mediate bacterial–host chemical ecology to regulate various host biological phenomena, mainly immunity. Parasitic and symbiotic bacteria inhabiting the host are predicted to possess low-toxicity immunomodulators due to the chemical structural changes of their LPS caused by co-evolution with the host. Studies on the chemical synthesis and functional evaluation of their lipid As have been developed to test this hypothesis and to apply them to low-toxicity and safe adjuvants.  相似文献   

11.
Mass spectrometry and the emerging field of glycomics   总被引:1,自引:0,他引:1  
Zaia J 《Chemistry & biology》2008,15(9):881-892
The biological significance of protein and lipid glycosylation is well established. For example, cells respond to environmental stimuli by altering glycan structures on their surfaces, and cancer cells evade normal growth regulation in part by remodeling their surface glycans. In general, glycan chemical properties differ significantly from those of proteins, lipids, nucleic acids, and small molecule metabolites. Thus, advances in glycomics, a comprehensive study to identify all glycans in an organism, rely on the development of specialized analytical methods. Mass spectrometry (MS) is emerging as an enabling technology in the field of glycomics. This review summarizes recent developments in mass spectrometric analysis methods for protein-based glycomics and glycoproteomics workflows.  相似文献   

12.
One of the major goals in systems chemistry is to create molecular assemblies with emergent properties that are characteristic of life. An interesting approach toward this goal is based on merging different biological building blocks into synthetic systems with properties arising from the combination of their molecular components. The covalent linkage of nucleic acids (or their constituents: nucleotides, nucleosides and nucleobases) with lipids in the same hybrid molecule leads, for example, to the so-called nucleolipids. Herein, we describe nucleolipids with a very short sequence of two nucleobases per lipid, which, in combination with hydrophobic effects promoted by the lipophilic chain, allow control of the self-assembly of lipidic amphiphiles to be achieved. The present work describes a spectroscopic and microscopy study of the structural features and dynamic self-assembly of dinucleolipids that contain adenine or thymine moieties, either pure or in mixtures. This approach leads to different self-assembled nanostructures, which include spherical, rectangular and fibrillar assemblies, as a function of the sequence of nucleobases and chiral effects of the nucleolipids involved. We also show evidence that the resulting architectures can encapsulate hydrophobic molecules, revealing their potential as drug delivery vehicles or as compartments to host interesting chemistries in their interior.  相似文献   

13.
Li J  Cox AD  Hood D  Moxon ER  Richards JC 《Electrophoresis》2004,25(13):2017-2025
A capillary electrophoresis-electrospray-mass spectrometry technique for the characterization of lipopolysaccharides (LPSs) was developed, permitting the separation of trace-level O-deacylated LPS isoforms for subsequent structural characterization using tandem mass spectrometry (MS/MS). The separation buffer and electrospray interface were optimized first using O-deacylated LPS samples from large-scale preparations. It was found that with microelectrospray or sheath-solution interface, we could separate LPS in anionic forms and detect them using either negative or positive ion mode MS. For negative ion detection mode MS, 30 mM morpholine with addition of 5% v/v methanol was employed as separation buffer. When positive ion detection mode MS was required, 10 mM ammonium acetate with addition of 5% methanol was used as separation buffer. The structural assignments obtained from MS/MS and capillary zone electrophoresis-electrospray-MS (CZE-ESMS) analyses enabled the identification of isomeric glycoforms. Application of this technique to the analysis of LPS from the galE mutants of Neisseria meningitidis strain BZ157 B5+ revealed the presence of isomeric glycoforms, in which the location of a functional group phosphoethanolamine was found to be in either inner core or lipid A-OH regions. The described technique was also applied to the analysis of LPS samples from the galE mutant of N. meningitidis strains F1576 A4+ and A4-. The occurrence of isomeric LPS glycoforms differing by the location or presence of neutral sugar residues, such as hexoses, can also be characterized using MS/MS.  相似文献   

14.
A key process in the development of new drugs is elucidation of the interaction between the drug molecule and the target protein. Such knowledge then makes it possible to make systematic structural modifications of the drug molecule to optimize the interaction. Many analytical techniques can be applied to proteins in solution such as circular dichroism, ultraviolet, and fluorescence spectroscopy but these all have limitations. In this paper, we investigate the feasibility of using relatively simple, visible light Raman spectroscopic methods to investigate amino acids and related biopolymers.  相似文献   

15.
A highly convergent strategy for the synthesis of several derivatives of the lipid A of Rhizobium sin-1 has been developed. The synthetic derivatives are 2-aminogluconate 3 and 2-aminogluconolactone 4, both of which lack C-3 acylation. These derivatives were obtained by the preparation of disaccharides in which the two amino groups and the C-3' hydroxy group could be modified individually with acyl or beta-hydroxy fatty acyl groups. Detailed NMR spectroscopy and MS analysis of 3 and 4 revealed that, even under neutral conditions, the two compounds equilibrate. The synthetic compounds lack the proinflammatory effects of Escherichia coli lipopolysaccharide (LPS), as indicated by an absence of tumor necrosis factor production. Although 3 and 4 were able to antagonize E. coli LPS, they were significantly less potent than the synthetic compound 2, which is acylated at C-3, and R. sin-1 LPS; these results indicate that the beta-hydroxy fatty acyl group at C-3 contributes to the antagonistic properties of R. sin-1 LPS. Based on a comparison of the biological responses of the synthetic lipid A derivatives with those of the R. sin-1 LPS and lipid A, the 3-deoxy-D-manno-octulosonic moieties appear to be important for the optimal antagonization of enteric LPS-induced cytokine production.  相似文献   

16.
17.
Two conjugated metabolites of methapyrilene hydrochloride isolated from mouse-hepatocytes were examined by mass spectrometry using fast-atom bombardment (FAB) and thermospray ionization. The major metabolite, methapyrilene glucuronide, was identified based on a prominent peak due to the protonated molecule as well as the loss of the dimethylamine and sugar moieties. Identification of the second metabolite was complicated by large signals associated with the biological sample matrix. The complementary nature of the fragmentation observed in the mass spectra using FAB and thermospray ionization allowed this metabolite to be identified as the desmethylmethapyrilene glucuronide. The fragmentation observed using FAB ionization was not greatly affected by the presence of the glucuronide moiety. While loss of the sugar moiety indicated a glucuronide, additional fragmentation confirmed the presence of the underlying ethylenediamine substructure which is characteristic of this class of antihistamines.  相似文献   

18.
In this work we present a novel approach for the identification of plant metabolites using ultrahigh performance liquid chromatography coupled to accurate mass time-of-flight mass spectrometry. The workflow involves developing an in-house compound database consisting of exact masses of previously identified as well as putative compounds. The database is used to screen accurate mass spectrometry (MS) data to identify possible compound matches. Subsequent tandem MS data is acquired for possible matches and used for structural elucidation. The methodology is applied to profile monoterpene glycosides in Vitis vinifera cv. Muscat of Alexandria grape berries over three developmental stages. Monoterpenes are a subclass of terpenes, the largest class of plant secondary metabolites, and are found in two major forms in the plant, “bound” to one or more sugar moieties or “free” of said sugar moieties. In the free form, monoterpenes are noted for their fragrance and play important roles in plant defense and as attractants for pollinators. However, glycoconjugation renders these compounds odorless, and it is this form that the plant uses for monoterpene storage. In order to gain insight into monoterpene biochemistry and their fate in the plant an analysis of intact glycosides is essential. Eighteen monoterpene glycosides were identified including a monoterpene trisaccharide glycoside, which is tentatively identified here for this first time in any plant. Additionally, while previous studies have identified monoterpene malonylated glucosides in other grapevine tissue, we tentatively identify them for the first time in grape berries. This analytical approach can be readily applied to other plants and the workflow approach can also be used for other classes of compounds. This approach, in general, provides researchers with data to support the identification of putative compounds, which is especially useful when no standard is available.  相似文献   

19.
20.
Li J  Koga M  Brochu D  Yuki N  Chan K  Gilbert M 《Electrophoresis》2005,26(17):3360-3368
Lipooligosaccharide (LOS) is the major component of the external membrane of Campylobacter jejuni. LOS contains a hydrophobic moiety, lipid A, and a hydrophilic moiety, oligosaccharide. Due to the unique mimicry of human ganglioside structures and potential involvement in the induction of the autoimmune polyneuropathies, Guillain-Barré and Miller Fisher syndromes, the structural characterization of C. jejuni LOS has received much attention. We have been using capillary zone electrophoresis-mass spectrometry to analyze O-deacylated LOS from C. jejuni. In an attempt to optimize the separation conditions, the effect of methanol on the separation of LOS was investigated. It was found that methanol resulted in stronger adsorption of LOS onto the wall of fused-silica capillary. In this paper, we applied this adsorption to perform electrophoresis-assisted open-tubular liquid chromatography electrospray mass spectrometry for the analysis of O-deacylated LOS mixtures from C. jejuni. The analytical potential of the proposed strategy for the analysis of O-deacylated LOS glycoforms from five bacterial colonies is demonstrated. Online tandem mass spectrometry is shown to provide a powerful tool for characterization of variations in the hexosamine backbone, phosphorylation of the lipid A, and sialic acid sequence information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号