首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We study the spin edge states, induced by the combined effect of Bychkov-Rashba spinorbit and Zeeman interactions or of Dresselhaus spin-orbit and Zeeman interactions in a twodimensional electron system, exposed to a perpendicular quantizing magnetic field and restricted by a hard-wall confining potential. We derive an exact analytical formula for the dispersion relations of spin edge states and analyze their energy spectrum versus the momentum and the magnetic field. We calculate the average spin components and the average transverse position of electron. It is shown that by removing the spin degeneracy, spin-orbit interaction splits the spin edge states not only in the energy but also induces their spatial separation. Depending on the type of spin-orbit coupling and the principal quantum number, the Zeeman term in the combination with spin-orbit interaction increases or decreases essentially the splitting of bulk Landau levels while it has a weak influence on the spin edge states.  相似文献   

2.
Pumping of charge current by spin dynamics in the presence of the Rashba spin-orbit interaction is theoretically studied. Considering a disordered electron, the exchange coupling and spin-orbit interactions are treated perturbatively. It is found that the dominant current induced by spin dynamics is interpreted as a consequence of the conversion from spin current via the inverse spin Hall effect. We also find that the current has an additional component from a fictitious conservative field. The results are applied to the case of a moving domain wall.  相似文献   

3.
We theoretically investigate the electron transport properties in a non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit interactions. The detailed-numerical results show that (1) the large spin polarization can be achieved due to Dresselhaus and Rashba spin-orbit couplings induced splitting of the resonant level, although the magnetic field is zero in such a structure, (2) the Rashba spin-orbit coupling plays a greater role on the spin polarization than the Dresselhaus spin-orbit interaction does, and (3) the transmission probability and the spin polarization both periodically change with the increase of the well width.  相似文献   

4.
The D'yakonov-Perel' spin relaxation induced by the spin-orbit interaction is examined in disordered two-dimensional electron gas. It is shown that, because of the electron-electron interactions, substantially different spin relaxation rates may be observed depending on the technique used to extract them. It is demonstrated that the relaxation rate of a spin population is proportional to the spin-diffusion constant D(s), while the spin-orbit scattering rate controlling the weak-localization corrections is proportional to the diffusion constant D, i.e., the conductivity. The two diffusion constants get strongly renormalized by the electron-electron interactions, but in different ways. As a result, the corresponding relaxation rates are different, with the difference between the two being especially strong near a magnetic instability or near the metal-insulator transition.  相似文献   

5.
The spin-dependent electron transport is numerically studied in a nonmagnetic nanostructure in the presence of both Dresselhaus and Rashba spin-orbit interactions. It is shown that the large spin polarization can be achieved in such a structure mainly due to the Rashba spin-orbit term induced splitting of the resonant level. It is also shown that the spin polarization strongly depends on the well width and the thickness of the middle barrier as well as the height of the middle barrier.  相似文献   

6.
朱国宝 《中国物理 B》2012,(11):429-433
The spin Hall and spin Nernst effects in graphene are studied based on Green’s function formalism.We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in the Kane-Mele model with various structures.When both intrinsic and Rashba spin-orbit interactions are present,their interplay leads to some characteristics of the dependence of spin Hall and spin Nernst conductivities on the Fermi level.When the Rashba spin-orbit interaction is smaller than intrinsic spin-orbit coupling,a weak kink in the conductance appears.The kink disappears and a divergence appears when the Rashba spin-orbit interaction enhances.When the Rashba spin-orbit interaction approaches and is stronger than intrinsic spin-orbit coupling,the divergence becomes more obvious.  相似文献   

7.
孙庆丰 《物理》2008,37(08):594-599
近十年来,国内外科学工作者对自旋轨道耦合和自旋流作了很多深入的研究.文章介绍该领域的一些重要进展以及它的发展情况,包括介绍由自旋轨道耦合所引起的内在自旋霍尔效应和持续自旋流、自旋流的产生、自旋流的定义以及自旋流产生电场等.最后也讨论一些有待于解决的课题,以及对该领域的展望.  相似文献   

8.
We theoretically study the spin properties of two interacting electrons confined in the IhAs parallel coupled quantum dots (CQDs) with spin-orbit interactions (SOI) by exact diagonalization method. Through the SOI induced spin mixing of the singlet and the triplet states, we show the different spin properties for the weak and strong SOI. We investigate the coherent singlet-triplet spin oscillations of the two electrons under the SOI, and demonstrate the detailed behaviors of the spin oscillations depending on the SOI strengths, the inter-dot separations and the external magnetic fields. To better understand the underlying physics of the spin dynamics, we introduce a four-level model Hamiltonian for both weak and strong SOI, and find that the SOI induced in plane effective magnetic fields can be quantitatively extracted from the two-electron excitation energy spectra.  相似文献   

9.
B Gisi  S Sakiroglu  &#  Sokmen 《中国物理 B》2016,25(1):17103-017103
In this work, we investigate the effects of interplay of spin–orbit interaction and in-plane magnetic fields on the electronic structure and spin texturing of parabolically confined quantum wire. Numerical results reveal that the competing effects between Rashba and Dresselhaus spin–orbit interactions and the external magnetic field lead to a complicated energy spectrum. We find that the spin texturing owing to the coupling between subbands can be modified by the strength of spin–orbit couplings as well as the magnitude and the orientation angle of the external magnetic field.  相似文献   

10.
We calculate the modification of the effective interaction of particles on the Fermi surface due to polarization contributions, with particular attention to spin-dependent forces. In addition to the standard spin-spin, tensor, and spin-orbit forces, spin nonconserving effective interactions are induced by screening in the particle-hole channels. Furthermore, a novel long-wavelength tensor force is generated. We compute the polarization contributions to second order in the low-momentum interaction V(low k) and find that the medium-induced spin-orbit interaction leads to a reduction of the 3P2 pairing gap for neutrons in the interior of neutron stars.  相似文献   

11.
The effects of intrinsic spin-orbit and Coulomb interactions on low-energy properties of finite width graphene armchair ribbons are studied by means of a Dirac Hamiltonian. It is shown that metallic states subsist in the presence of intrinsic spin-orbit interactions as spin-filtered edge states, in contrast with the insulating behavior predicted for graphene planes. A charge-gap opens due to Coulomb interactions in neutral ribbons, that vanishes as Delta approximately 1/W, with a gapless spin sector. Weak intrinsic spin-orbit interactions do not change the insulating behavior. Explicit expressions for the width-dependent gap and various correlation functions are presented.  相似文献   

12.
刘乃清  黄立捷  王瑞强  胡梁宾 《中国物理 B》2016,25(2):27201-027201
We have studied the characteristics of current-induced nonequilibrium spin polarization in semiconductor-nanowire/swave superconductor junctions with strong spin–orbit coupling. It was found that within some parameter regions the magnitude of the current-induced nonequilibrium spin polarization density in such structures will increase(or decrease) with the decrease(or increase) of the charge current density, in contrast to that found in normal spin–orbit coupled semiconductor structures. It was also found that the unusual characteristics of the current-induced nonequilibrium spin polarization in such structures can be well explained by the effect of the Andreev reflection.  相似文献   

13.
We study by real-space renormalization a class of one-dimensional self-avoiding walks (SAWs) exhibiting a nonzero critical temperature. A linear renormalization transformation is carried out in closed form in a three-parameter subspace of SAW Hamiltonians. We find lines of fixed points along which the degree of localization of the fixed-point interactions varies. The role of the spin rescaling factor in the transformation is explicitly demonstrated.  相似文献   

14.
We investigate the theoretically combined effect of spin-orbit interactions and Coulomb interaction on the ground state and transport property of a quantum wire oriented along different crystallographic directions in the (110) plane. We find that the electron’s ground state exhibits phase transition among spin density wave, charge density wave, singlet superconductivity and metamagnetism, which can be controlled by changing the crystallographic orientation, the strengths of the spin-orbit interactions and the Coulomb interaction. The ac conductance exhibits a significant anisotropic behavior and a out-of-plane spin polarization which can be tuned by an in-plane electric field.  相似文献   

15.
The spin texture of the metallic two-dimensional electron system (sqrt[3]×sqrt[3])-Au/Ge(111) is revealed by fully three-dimensional spin-resolved photoemission, as well as by density functional calculations. The large hexagonal Fermi surface, generated by the Au atoms, shows a significant splitting due to spin-orbit interactions. The planar components of the spin exhibit a helical character, accompanied by a strong out-of-plane spin component with alternating signs along the six Fermi surface sections. Moreover, in-plane spin rotations toward a radial direction are observed close to the hexagon corners. Such a threefold-symmetric spin pattern is not described by the conventional Rashba model. Instead, it reveals an interplay with Dresselhaus-like spin-orbit effects as a result of the crystalline anisotropies.  相似文献   

16.
We argue that a pseudo-one-dimensional electron gas is magnetized when a voltage bias is applied with the Fermi level tuned to be in the energy gap generated by a spin-orbit interaction. The magnetization is an indication of spin-carrying currents due to the spin-orbit interaction. The origin of the magnetization, however, is essentially different from the “spin accumulation” in two-dimensional systems with spin-orbit interactions.  相似文献   

17.
The Thomas-Fermi statistical method is generalized to include spin-orbit interactions. The momentum distributions are given by toroids, different for two particle spin orientations. A system of two coupled differential equations is derived by a variational procedure for the densities of the two populations. From these equations the polarization at the surface of nuclear matter is calculated, as well as the change of the nuclear surface tension due to spin-orbit coupling. Within the statistical framework the coupling strength of the spin-orbit potential is found to be in reasonable agreement with experiment by using only the experimental single-particle level order of the shell model which implies an excess of states with spin parallel to the orbital angular momentum.  相似文献   

18.
We study a two-dimensional electron system in the presence of spin-orbit interaction. It is shown analytically that the spin-orbit interaction acts as a transversal effective electric field, whose orientation depends on the sign of the z-axis spin projection. This effect does not require any driving electrical field and is inherent to the spin-orbit interactions present in semiconductor materials. Therefore, it should manifest in both closed and open systems. An experiment is proposed to observe the intrinsic spin Hall effect in the far infrared absorption of an asymmetric semiconductor nanostructure.  相似文献   

19.
We propose a general theory of the spin-transfer effects that occur when current flows through inhomogeneous magnetic systems. Our theory does not rest on an appeal to conservation of total spin, can assess whether or not current-induced magnetization precession and switching in a particular geometry will occur coherently, and can estimate the efficacy of spin-transfer when spin-orbit interactions are present. We illustrate our theory by applying it to a toy-model twodimensional-electron-gas ferromagnet with Rashba spin-orbit interactions.  相似文献   

20.
《Physics letters. A》2020,384(4):126092
The purpose of this paper is to theoretically investigate the spin-orbit interactions of common semiconductor superlattices. Spin splitting and spin-orbit interaction coefficients are calculated based on interactions between the interface-related-Rashba effect and Dresselhaus effect. Semiconductor superlattice shows a series of specific characteristics in spin splitting as follows. The spin splitting of the superlattice structure is greater than that of a single quantum well, contributing to significant spin polarization, spin filtering, and convenient manipulation of spintronic devices. The spin splitting of some superlattice structures does not change with variation of the size of some constituent quantum wells, reducing the requirements for accuracy in the size of quantum wells. The total spin splitting of lower sub-levels of some superlattice can be designed to be zero, realizing a persistent spin helix effect and long spin relaxation time, however, the total spin splitting of higher sub-levels is still appreciable, contributing to desirable spin polarization. These results demonstrate that one superlattice structure can realize two functions, acting as a spin field effect transistor and a spin filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号