首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fragmentation pathways of deprotonated cyclic dipeptides have been studied by electrospray ionization multi‐stage mass spectrometry (ESI‐MSn) in negative mode. The results showed that the fragmentation pathways of deprotonated cyclic dipeptides depended significantly on the different substituents, the side chains of amino acid residues at the diketopiperazine ring. In the spectra of deprotonated cyclic dipeptides, the ion [M? H? substituent radical]? was firstly observed in the ESI mode. The characteristic fragment ions [M? H? substituent radical]? and [M? H? (substituent? H)]? could be used as the symbols of particular cyclic dipeptides. The hydrogen/deuterium (H/D) exchange experiment, the high‐resolution mass spectrometry (Q‐TOF) and theoretical calculations were used to rationalize the proposed fragmentation pathways and to verify the differences between the fragmentation pathways. The relative Gibbs free energies (ΔG) of the product ions and possible fragmentation pathways were estimated using the B3LYP/6–31++G(d, p) model. The results have some potential applications in the structural elucidation and interpretation of the mass spectra of homologous compounds and will enrich the gas‐phase ESI‐MS ion chemistry of cyclic dipeptides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
3.
We investigated the gas‐phase fragmentation reactions of a series of 2‐aroylbenzofuran derivatives by electrospray ionization tandem mass spectrometry (ESI‐MS/MS). The most intense fragment ions were the acylium ions m/z 105 and [M+H–C6H6]+, which originated directly from the precursor ion as a result of 2 competitive hydrogen rearrangements. Eliminations of CO and CO2 from [M+H–C6H6]+ were also common fragmentation processes to all the analyzed compounds. In addition, eliminations of the radicals •Br and •Cl were diagnostic for halogen atoms at aromatic ring A, whereas eliminations of •CH3 and CH2O were useful to identify the methoxyl group attached to this same ring. We used thermochemical data, obtained at the B3LYP/6‐31+G(d) level of theory, to rationalize the fragmentation pathways and to elucidate the formation of E , which involved simultaneous elimination of 2 CO molecules from B .  相似文献   

4.
Piplartine, an alkaloid produced by plants in the genus Piper , displays promising anticancer activity. Understanding the gas‐phase fragmentation of piplartine by electrospray ionization tandem mass spectrometry can be a useful tool to characterize biotransformed compounds produced by in vitro and in vivo metabolism studies. As part of our efforts to understand natural product fragmentation in electrospray ionization tandem mass spectrometry, the gas‐phase fragmentation of piplartine and its two metabolites 3,4‐dihydropiplartine and 8,9‐dihydropiplartine, produced by the endophytic fungus Penicillium crustosum VR4 biotransformation, were systematically investigated. Proposed fragmentation reactions were supported by ESI‐MS/MS data and computational thermochemistry. Cleavage of the C‐7 and N‐amide bond, followed by the formation of an acylium ion, were characteristic fragmentation reactions of piplartine and its analogs. The production of the acylium ion was followed by three consecutive and competitive reactions that involved methyl and methoxyl radical eliminations and neutral CO elimination, followed by the formation of a four‐member ring with a stabilized tertiary carbocation. The absence of a double bond between carbons C‐8 and C‐9 in 8,9‐dihydropiplartine destabilized the acylium ion and resulted in a fragmentation pathway not observed for piplartine and 3,4‐dihydropiplartine. These results contribute to the further understanding of alkaloid gas‐phase fragmentation and the future identification of piplartine metabolites and analogs using tandem mass spectrometry techniques. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Sorafenib is an orally active multikinase inhibitor for the treatment of renal cell carcinoma. A series of sorafenib structural analogues were investigated in this work for their gas‐phase fragmentation behaviors using electrospray ionization ion trap mass spectrometry and quadrupole time‐of‐flight mass spectrometry in the positive mode. The possible fragmentation pathways were proposed based on ESI‐MS/MS data and theoretical calculation. Different from the typical α‐cleavage of amide, consecutive reactions that involved elimination of H2O and CH3NC were observed for 2‐pyridinecarboxamide derivatives, which were followed by the formation of a stabilized 7‐membered ring carbocation by loss of CO. Two possible protonation sites occurred at carbonyl oxygen atoms for aryl‐urea derivatives and the α‐cleavage of urea was the main fragmentation pathways, which was followed by the formation of stable benzo [d] oxazole ring characteristic to aryl‐urea derivatives. The relative abundance of characteristic fragment ions and the energy‐resolved breakdown curves were used to distinguish the 4 sets of positional isomers of sorafenib and analogues. The methodology and results of the present work would contribute to the chemical structure identification of other structural analogues and the potential impurities presented in active pharmaceutical ingredients and drug formulations.  相似文献   

6.
Six synthesized 6-nitroquipazine derivatives were examined by electron ionization (EI) and electrospray ionization (ESI) mass spectrometry in positive and negative ion mode. The compounds exhibit high affinity for the serotonin transporter (SERT) and belong to a new class of SERT inhibitors. The EI mass spectra registered in negative ion mode showed prominent molecular ions for all the compounds studied. All EI mass spectra and all ESI mass spectra showed similar fragmentation pathways of molecular ions, but the pathways differed between EI and ESI. The differences were explained with the aid of theoretical evaluation of the stability of the respective radical ions (EI MS) and protonated ions (ESI MS).  相似文献   

7.
Fragmentation reactions of β‐hydroxymethyl‐, β‐acetoxymethyl‐ and β‐benzyloxymethyl‐butenolides and the corresponding γ‐butyrolactones were investigated by electrospray ionization tandem mass spectrometry (ESI‐MS/MS) using collision‐induced dissociation (CID). This study revealed that loss of H2O [M + H ?18]+ is the main fragmentation process for β‐hydroxymethylbutenolide (1) and β‐hydroxymethyl‐γ‐butyrolactone (2). Loss of ketene ([M + H ?42]+) is the major fragmentation process for protonated β‐acetoxymethyl‐γ‐butyrolactone (4), but not for β‐acetoxymethylbutenolide (3). The benzyl cation (m/z 91) is the major ion in the ESI‐MS/MS spectra of β‐benzyloxymethylbutenolide (5) and β‐benzyloxymethyl‐γ‐butyrolactone (6). The different side chain at the β‐position and the double bond presence afforded some product ions that can be important for the structural identification of each compound. The energetic aspects involved in the protonation and gas‐phase fragmentation processes were interpreted on the basis of thermochemical data obtained by computational quantum chemistry. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
纪三郝  巨勇  肖强  赵玉芬 《中国化学》2006,24(7):943-949
Novel steroidal phosphoramidate conjugates of 3'-azido-2',3'-dideoxythymidine(AZT)and amino acid esterswere synthesized and determined by positive and negative ion electrospray ionization mass spectrometry.The MSfragmentation behaviors of the steroidal phosphoramidate conjugates have been investigated in conjunction withtandem mass spectrometry of ESI-MS/MS.There were three characteristic fragment ions in the positive ion ESImass spectra,which were the Na adduct ions with loss of steroidal moiety,amino acid ester moiety from pseudomolecular ion(M Na)~ ,and the phosphoamino acid methyl ester Na adduct ion by α-cleavage of the phosphora-midate respectively.The main fragment ions in negative ion ESI mass spectra were the ion(M-HN_3)~-,the ion(M-AZT-H)~-,and the ion(M-steroidal moiety-H)~- besides the pseudo molecular ion(M-H)~-.Thefragmentation patterns did not depend on the attached amino acid ester moiety.  相似文献   

9.
The substituent effect of electron‐withdrawing groups on electron affinity and gas‐phase basicity has been investigated for substituted propynl radicals and their corresponding anions. It is shown that when a hydrogen of the α‐CH3 group in the propynyl system is substituted by an electron‐withdrawing substituent, electron affinity increases, whereas gas‐phase basicity decreases. These results can be explained in terms of the natural atomic charge of the terminal acetylene carbon of the systems. The calculated electron affinities are 3.28 eV (?C?C? CH2F), 3.59 eV (?C?C? CH2Cl) and 3.73 eV (?C?C? CH2Br), and the gas‐phase basicities of their anions are 359.5 kcal/mol (?:C?C? CH2F), 354.8 kcal/mol (:C?C? CH2Cl) and 351.3 kcal/mol (?:C?C? CH2Br). It is concluded that the larger the magnitude of electron‐withdrawing, the greater is the electron affinity of radical and the smaller is the gas‐phase basicity of its anion. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

10.
Electrospray ionization triple quadrupole mass spectrometry (ESI‐TSQ‐MS) and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI‐FTICR‐MS) were used to investigate the interesting gas‐phase reactions of the cationic iron (Fe) complexes of 2‐pyrimidinyloxy‐N‐arylbenzylamines (1–6), which are generated by ESI when mixing their methanolic solutions. Further studies of these Fe complexes by collision‐induced dissociation (CID) show that Fe(III) complexes undergo an interesting gas‐phase single electron transfer (SET) reaction to give 1?+–6?+,with loss of neutral FeCl2, whereas Fe(II) can catalyze gas‐phase Smiles rearrangement reactions of compounds 1–6. By using different Fe(II)X2 salts (X = Cl or Br) with a set of reactants, the role of the counterion (X?) and the structure effect of the reactants on Fe(II)‐catalyzed gas‐phase Smiles rearrangement reactions are studied. Evidence obtained from by TSQ‐MS and FTICR‐MS experiments, hydrogen/deuterium (H/D) exchange experiments and theoretical computations supported some unique gas‐phase chemistries initiated by introduction of Fe(II) into 1. Importantly, by comparing the distinct gas‐phase reaction results of the cationic Fe(III) complexes with those of Fe(II) complexes, the charge state effects of iron on the gas‐phase chemistries of Fe complexes are revealed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, different electrospray ionization mass spectrometric (ESI‐MS) methods were utilized to analyze several pairs of taxane stereoisomers including paclitaxel and 7‐epi‐paclitaxel. Both ESI‐MS and tandem mass spectrometry (MS/MS) techniques provided stereochemically dependent mass spectra in negative‐ion mode, and all studied stereoisomers could be easily distinguished based on their characteristic ions or distinct fragmentation patterns. MS/MS experiments for several taxane analogues at various collision energies were performed to elucidate potential dissociation pathways. The gas‐phase deprotonation potentials were also calculated to estimate the most thermodynamically favorable deprotonation site using DFT B3LYP/6‐31G(d). The results of the theoretical studies agreed well with the fragmentation patterns of paclitaxel and 7‐epi‐paclitaxel observed from MS/MS experiments. In addition, it was found that liquid chromatography (LC)/ESI‐MS was a useful and sensitive technique for assignment of C‐7 taxane stereoisomers from realistic samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Knowledge of the fragmentation mechanisms of lactones and their behaviour under electrospray ionization (ESI) conditions can be extended to larger and more complex natural products that contain an α,β‐unsaturated γ‐lactone moiety in their structure. Moreover, little is known about the gas‐phase behaviour of α,β‐unsaturated γ‐lactones linked or fused to sugars. Therefore, five α,β‐unsaturated γ‐lactones (butenolides) fused to a pyranose ring, recently synthesized compounds with potential relevance regarding their biological properties, were investigated using ESI‐MS and ESI‐MS/MS in both positive and negative ion modes. Their fragmentation mechanisms and product ion structures were compared. It was observed that two isomers could be unambiguously distinguished in the negative ion mode by the fragmentation pathways of their deprotonated molecules as well as in the positive ion mode by the fragmentation pathways of either the protonated or the sodiated molecule. Fragmentation mechanisms are proposed taking into account the MS/MS data and semi‐empirical calculations using the PM6 Hamiltonean. The semi‐empirical calculations were also very useful in determining the most probable protonation and cationization sites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The fragmentation reactions of N‐monoalkyloxyphosphoryl amino acids (N‐MAP‐AAs) were studied by electrospray ionization tandem mass spectrometry (ESI‐MS). The sodiated cyclic acylphosphoramidates (CAPAs) were formed through a characteristic pentacoordinate phosphate participated rearrangement reaction in the positive‐ion ESI‐MS/MS and HR‐MS/MS of N‐MAP‐AAs, in which the fragmentation patterns were clearly different from those observed in the corresponding ESI‐MS/MS of N‐dialkyloxyphosphoryl amino acids/peptides and N‐phosphono amino acids. The formation of CAPAs depended on the chemical structures of N‐terminal phosphoryl groups, such as alkyloxy group, negative charge and alkali metal ion. A possible integrated rearrangement mechanism for both PN to PO phosphoryl group migration and formation of CAPAs was proposed. The fragmentation patterns of CAPAs as novel intermediates in gas phase were also investigated. In addition, it was found that the formation of α‐amino acid CAPAs was more favorable than β‐ or γ‐CAPAs in gas phase, which was consistent with previous solution‐phase experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The zwitterionic drug 3‐methyl‐9‐(2‐oxa‐2λ5‐2H‐1,3,2‐oxazaphosphorine‐2‐cyclohexyl)‐3,6,9‐triazaspiro[5,5]undecane chloride (SLXM‐2) is a novel synthetic compound which has shown anticancer activity and low toxicity in vivo. In this study, the various gas‐phase fragmentation routes were analyzed by electrospray ionization mass spectrometry (positive ion mode) in conjunction with tandem mass spectrometry (ESI‐MSn) for the first time. In ESI‐MS the fragment ion at m/z 289 (base peak) was formed by loss of the chlorine anion from the zwitterionic precursor SLXM‐2. The fragment ion at m/z 232 was formed from the ion at m/z 289 by loss of 1‐methylaziridine. The detailed gas‐phase collision‐induced dissociation (CID) fragmentation mechanisms obtained from the various precursor ions extracted from the zwitterionic SLXM‐2 drug was obtained by tandem mass spectrometry analyses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
It is demonstrated herein that poly(ethylene glycol) (PEG) oligomers can form stable complexes with the chlorine anion in the gas phase as evidenced by results from electrospray ionization mass spectrometry (ESI‐MS) and molecular dynamics simulation. While the formation of crown‐ether‐like structures by acyclic polyethers in their complexes with alkali metal cations coordinated by the ether oxygen atoms has been extensively studied, the possibility of forming ‘inversed’ quasi‐cyclic structures able to bind a monoatomic anion has not been proved till now. We have observed the formation of stable gas‐phase complexes of oligomers of PEG‐400 with the Cl? anion experimentally by ESI‐MS for the first time. It is suggested that a necessary precondition for obtaining the polyether‐chlorine anion clusters is the prevention of the formation of neutral ion pairs. Molecular dynamics simulation has demonstrated the wrapping of the Cl? anion by the PEG chain, to stabilize the PEGn?Cl? clusters in the gas phase. The conformation of the polyether chain in such quasi‐cyclic or quasi‐helical complexes is ‘inversed’ compared with that in the complexes with cations: that is its hydrogen atoms are turned towards the central anion. Awareness of the possibility of the Cl? anion being trapped in quasi‐cyclic PEG structures may be of practical importance when considering the intermolecular interactions of PEGs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Explosive detection and identification play an important role in the environmental and forensic sciences. However, accurate identification of isomeric compounds remains a challenging task for current analytical methods. The combination of electrospray multistage mass spectrometry (ESI‐MSn) and high resolution mass spectrometry (HRMS) is a powerful tool for the structure characterization of isomeric compounds. We show herein that resonant ion activation performed in a linear quadrupole ion trap allows the differentiation of dinitrotoluene isomers as well as aminodinitrotoluene isomers. The explosive‐related compounds: 2,4‐dinitrotoluene (2,4‐DNT), 2,6‐dinitrotoluene (2,6‐DNT), 2‐amino‐4,6‐dinitrotoluene (2A‐4,6‐DNT) and 4‐amino‐2,6‐dinitrotoluene (4A‐2,6‐DNT) were analyzed by ESI‐MS in the negative ion mode; they produced mainly deprotonated molecules [M ? H]?. Subsequent low resolution MSn experiments provided support for fragment ion assignments and determination of consecutive dissociation pathways. Resonant activation of deprotonated dinitrotoluene isomers gave different fragment ions according to the position of the nitro and amino groups on the toluene backbone. Fragment ion identification was bolstered by accurate mass measurements performed using Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR/MS). Notably, unexpected results were found from accurate mass measurements performed at high resolution for 2,6‐DNT where a 30‐Da loss was observed that corresponds to CH2O departure instead of the expected isobaric NO? loss. Moreover, 2,4‐DNT showed a diagnostic fragment ion at m/z 116, allowing the unambiguous distinction between 2,4‐ and 2,6‐DNT isomers. Here, CH2O loss is hindered by the presence of an amino group in both 2A‐4,6‐DNT and 4A‐2,6‐DNT isomers, but nevertheless, these isomers showed significant differences in their fragmentation sequences, thus allowing their differentiation. DFT calculations were also performed to support experimental observations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The fragmentation pathways of both protonated and sodiated pentacoordinate spirobicyclic aminoacylphosphoranes (P‐AAs) have been studied by electrospray ionization multi‐stage mass spectrometry (ESI‐MSn) in positive mode. The possible pathways and their mechanisms are elucidated through the combination of ESI‐MS/MS, isotope (15 N and 2H) labeling and high‐resolution Fourier transform ion cyclotron resonance (FTICR)‐MS/MS. The relative Gibbs free energies (ΔG) of the product ions and possible fragmentation pathways are estimated at the B3LYP/6‐31 G(d) level of theory. The theoretical calculations show that both protonated and sodiated P‐AAs would quickly fragment before Berry pseudorotation. For protonated P‐AAs, they have different tendencies to P–O or P–N bond cleavage. For sodiated P‐AAs, the P–N bond is easier to cleave and produces the tetracoordinated phosphorus ion H. These results to some extent may give a clue to the chemistry of the active sites of phosphoryl transfer enzymes and will enrich the gas‐phase ESI‐MS ion chemistry of pentacoordinate phosphoranes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
This study reports the identification of oligomeric alkenylperoxides by electrospray ionization mass spectrometry (ESI‐MS) and tandem mass spectrometry (ESI‐MS2), during the oxidation of oleic, linoleic and linolenic acids with Fenton's (Fe2+/H2O2) and Fe2+/O2 systems. The reactions were followed by ferrous oxidation‐xylenol orange method together with GC‐MS and GC‐FID, allowing to observe that both oxidation systems are different in terms of hydroperoxide evolution, probably due to the presence of different intermediate reactive species: perferryl ion and OH· radical responsible for the decomposition of lipid hydroperoxides and formation of new compounds. The analysis of ESI‐MS in the negative mode, obtained after oxidation of each fatty acid, confirmed the presence of the monomeric oxidation products together with other compounds at high mass region above m/z 550. These new ions were attributed to oligomeric structures, identified by the fragmentation pathways observed in the tandem mass spectra. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Two new flexible extended dialdehydes (H2hpdd and H2pdd) with different functional pendant arms (? CH2CH2PhOH and ? CH2CH2Ph) have been synthesized and reacted with 1,2‐bis(2‐aminoethoxy)ethane to prepare Schiff‐base macrocyclic complexes in the presence of a ZnII‐ion template. As a result, two preorganized dinuclear ZnII intermediates ( 1 and 2 ), as well as two 42‐membered folded [2+2] macrocyclic dinuclear ZnII complexes ( 3 and 4 ), were produced. The central zinc ions in compounds 1 – 4 showed distinguishable coordination patterns with the dialdehydes and the [2+2] macrocyclic ligands, in which a subtle pH‐adjustment function of the two pendant arms (with or without the phenolic hydroxy group) was believed to play a vital role. Furthermore, cation‐ and anion‐recognition experiments for complexes 3 and 4 revealed that they could selectively recognize acetate ions by the formation of 1:1 stoichiometric complexes, as verified by changes in their UV/Vis and MS (ESI) spectra and even by the naked eye.  相似文献   

20.
In the literature, it is reported that the protonated ketotifen mainly undergoes C?C double bond cleavage in electrospray ionization tandem mass spectrometry (ESI‐MS/MS); however, there is no explanation on the mechanism of this fragmentation reaction. Therefore, we carried out a combined experimental and theoretical study on this interesting fragmentation reaction. The fragmentation of protonated ketotifen (m/z 310) always generated a dominant fragment ion at m/z 96 in different electrospray ionization mass spectrometers (ion trap, triple quadrupole and linear trap quadrupole (LTQ)‐orbitrap). The mechanism of the generation of this product ion (m/z 96) through the C?C double bond cleavage was proposed to be a sequential hydrogen migration process (including proton transfer, continuous two‐step 1,2‐hydride transfer and ion‐neutral complex‐mediated hydride transfer). This mechanism was supported by density functional theory (DFT) calculations and a deuterium labeling experiment. DFT calculations also showed that the formation of the product ion m/z 96 was most favorable in terms of energy. This study provides a reasonable explanation for the fragmentation of protonated ketotifen in ESI‐MS/MS, and the fragmentation mechanism is suitable to explain other C?C double bond cleavage reactions in mass spectrometry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号