首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulse radiolysis studies were carried out to determine the rate constants for reactions of ClO radicals in aqueous solution. These radicals were produced by the reaction of OH with hypochlorite ions in N2O saturated solutions. The rate constants for their reactions with several compounds were determined by following the build up of the product radical absorption and in several cases by competition kinetics. ClO was found to be a powerful oxidant which reacts very rapidly with phenoxide ions to form phenoxyl radicals and with dimethoxybenzenes to form the cation radicals (k = 7 × 108 −2 × 109 M-1 s-1). ClO also oxidizes ClO-2 and N-3 ions rapidly (9.4 × 108 and 2.5 × 108 M-1 s-1, respectively), but its reactions with formate and benzoate ions were too slow to measure. ClO does not oxidize carbonate but the CO-3 radical reacts with ClO- slowly (k = 5.1 × 105 M-1 s-1).  相似文献   

2.
Reactivities of free radical oxidants, .OH, Br-·2 and Cl3COO. and a reductant, CO-·2, with trypsin and reactive protein components were determined by pulse radiolysis of aqueous solutions at pH 7, 20°C. Highly reactive free radicals, .OH, Br-·2 and CO-·2, react with trypsin at diffusion controlled rates, k(.OH + trypsin) = 8.2 × 1010 M-1 s-1, k(Br-·2 + trypsin) = 2.55 × 109 M-1 s-1 and k(CO-·2 + trypsin) = 2.6 × 109 M-1 s-1. Moderately reactive trichloroperoxy radical, k(Cl3COO. + trypsin) = 3 × 108 M-1 s-1, preferentially oxidizes histidine residues. The efficiency of inactivation of trypsin by free radicals is inversely proportional to their reactivity. The yields of inactivation of trypsin by .OH, Br-·2 and CO-·2 are low, G(inactivation) = 0.6-0.8, which corresponds to ∾ 10% of the initially produced radicals. In contrast, Cl3COO. inactivates trypsin with ∾ 50% efficiency, i.e. G(inactivation) = 3.2.  相似文献   

3.
The reduction of permanganate by oxalate in the presence of manganese(II) ion in acidic media is described. All reactions were run at 525 nm and constant ionic strength 1.0 M. The reaction was found to obey the rate expression —d[MnO4-]dt = k [Mn2+] [C2O42-]2 [MnO4-] [H+]-2 = k' [MnC2O4] [MnO4-]. The values of k and k' were shown to be 5.4 × 104 M-1 s-1 and 8.2 × 104 M-1 s-1, respectively. Reaction rate methods for the determination of manganese(II) and oxalic acid are reported. The rate of disappearance of permanganate was monitored automatically and related directly to manganese-(II) and oxalic acid concentrations. Manganese(II) in the ranges 1–10 × 10-4 M and 1–10 × 10-3 M and oxalic acid in the range 0–20 μg ml-1 can be determined very rapidly with a precision of 1–2%.  相似文献   

4.
The decay of Br-2 in Ar-purged or N2O-saturated aqueous solutions of KBr (0.01-1.0 M) in the pH range 1–7 has been re-examined using the techniques of pulse radiolysis and computer simulation. The dependence of the rate constant for the intrinsic decay of Br-2 on ionic strength (controlled by KBr) has been established; the values of k (Br-2 + Br-2) are (1.9 ± 0.1) × 109, (2.2 ± 0.3) × 109 and (2.4 ± 0.3) × 109 M-1 s-1 in the presence of 0.01, 0.1 and 1.0 M KBr, respectively, independent of pH between 2 and 7. The computer simulation of the decay of Br-2 has also generated, for the latter species, ϵ = 10,000 ± 700 M-1 cm-1 at λmax = 360 nm; this value has been calculated without making any assumption concerning G(Br-2). For the reduction of Br-2 by H atoms, a value of k (H + Br-2) = (1.4 ± 0.3) × 1010 M-1 s-1 has been obtained in the presence of 0.01-1.0 M KBr, independent of pH between 1–4. For the reduction of Br-2 by e-aq at pH 7 (10-3 M phosphates) and μ = 0.1, a value of k (Br-2 + e-aq = (1.1 ± 0.2) × 1010 M-1 s-1 has been obtained.  相似文献   

5.
The kinetics of oxidation of tartaric acid (TAR) by peroxomonosulfate (PMS) in the presence of Cu(II) and Ni(II) ions was studied in the pH range 4.05–5.20 and also in alkaline medium (pH ~12.7). The rate was calculated by measuring the [PMS] at various time intervals. The metal ions concentration range used in the kinetic studies was 2.50 × 10?5 to 1.00 × 10?4 M [Cu(II)], 2.50 × 10?4 to 2.00 × 10?3M [Ni(II)], 0.05 to 0.10 M [TAR], and µ = 0.15 M. The metal(II) tartarates, not TAR/tartarate, are oxidized by PMS. The oxidation of copper(II) tartarate at the acidic pH shows an appreciable induction period, usually 30–60 min, as in classical autocatalysis reaction. The induction period in nickel(II) tartarate is small. Analysis of the [PMS]–time profile shows that the reactions proceed through autocatalysis. In alkaline medium, the Cu(II) tartarate–PMS reaction involves autocatalysis whereas Ni(II) tartarate obeys simple first‐order kinetics with respect to [PMS]. The calculated rate constants for the initial oxidation (k1) and catalyzed oxidation (k2) at [TAR] = 0.05 M, pH 4.05, and 31°C are Cu(II) (1.00 × 10?4 M): k1 = 4.12 × 10?6 s?1, k2 = 7.76 × 10?1 M?1s?1 and Ni(II) (1.00 × 10?3 M): k1 = 5.80 × 10?5 s?1, k2 = 8.11 × 10?2 M?1 s?1. The results suggest that the initial reaction is the oxidative decarboxylation of the tartarate to an aldehyde. The aldehyde intermediate may react with the alpha hydroxyl group of the tartarate to give a hemi acetal, which may be responsible for the autocatalysis. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 620–630, 2011  相似文献   

6.
Polarographic investigations of Cu(II) complexation in aqueous alkaline solutions containing an excess of β-cyclodextrin (β-CD) show that the complex formation begins at pH > 11, the concentration of free (uncomplexed) Cu(II) ions being in the range from ca. 10-12 to ca. 10-19 M, depending on β-CD concentration and pH. The formation of copper(II) 1:1 hydroxy-complex with β-cyclodextrin anion (CD2-) was observed at pH 11–14. The logarithm of the stability constant of CuCD(OH)2- 2 complex is 19.7 ± 0.2 (20 °C, ionic strength 1.0), the values of the molar extinction coefficient and of the diffusion coefficient of this complex are 50 M-1 cm-1max = 660 nm) and 1.0 × 10-6 cm2 s-1, respectively.  相似文献   

7.
The one-electron reduction of Ru(bpz)2+3 by (CH3)2ḢOH is rapid (k = 3.5 × 109 M-1 s-1) and quantitative. The product of the reaction, which possesses a ligand-radical coordinated to a Ru(II) center, can be written generically as Ru(bpz)+3, and represented as Ru(bpz)2(.bpz-)+ in alkaline solution and its conjugate acid [Ru(bpz)2(.bpzH)2+; pKa = 7.1] in acidic solution. The reaction of Ru(bpz)2+3 with .OH (k = 5.5 × 109 M-1 s-1) yields the OH-adduct to the ring system of the ligands; Ru(bpz)2(.bpzOH)2+ is unstable toward bimolecular decay (k ∼4× 108 M-1 s-1). Reaction with H. (k = 3 × 109 M-1 s-1) results in hydrogenation at a ring-carbon; this product is unstable in the time frame of seconds. No reaction is observed between Ru(bpz)2+3 and Cl-.2. Ru(bpz)2(.bpz-)+ reduces Co(sep)3+ (k = 3.3 × 105 M-1 s-1) at pH 10, but there is no reaction at pH 4. However, Ru(bpz)2(.bpzH)2+ establishes an electron-transfer equilibrium (Keq = 7) with Cr(bpy)3+3 at pH 3.  相似文献   

8.
Radiolytic G-values were determined for [−Fe(III)IDA], Fe(II), (−IDA) and CHO-COOH in deoxygenated aqueous solutions of Fe(III)IDA and Fe(III)gly, and in the presence of scavengers, t-butanol, 2-propanol, methanol, sodium formate and O2. The metal ion was reduced by e-aq, H or secondary radicals HO2, CO2, CH2-OH and (CH3)2C-OH, while the OH radical did so indirectly through α-hydrogen abstraction from the ligand followed by intramolecular electron transfer. The rate constant k[OH + Fe(III)IDA], determined by the competition kinetics method at pH 2.0, was 1.7 × 108 M-1 s-1.  相似文献   

9.
Reaction of perrhenate with the aquated electron in neutral aqueous solution yields ReO42? (kf 1.3 × 1010 M?1 s?1), with an absorption maximum at 290 nm (ε 1700). This decays by a second-order path (kd 1.5 × 109 M?1 s?1) at a rate ~ 100-fold faster than the decay of TcO42? under similar conditions.  相似文献   

10.
Butylated hydroxytoluene (BHT) is a synthetic antioxidant widely used as a preservative in foods containing fat, the petroleum industry, and pharmaceuticals. Herein, a systematic investigation of reaction mechanisms and kinetics of BHT initiated by HO? and HOO? radicals in physiological environments has been reported for the first time. The overall rate coefficients were determined according to the QM-ORSA (quantum mechanics-based test for overall free radical scavenging activity) procedure at the M06-2X/6-311++G(d,p) level of theory. The radical adduct formation has been found to be the decisive mechanism for HO? scavenging in both polar and lipid media with koverall = 1.39 × 1012 and 1.13 × 1011 M–1 s–1, respectively. While this mechanism has no contribution to HOO? scavenging in physiological environments which mainly takes place via the hydrogen atom transfer mechanism (koverall = 2.51 × 105 and 1.70 × 104 M–1 s–1 in water and lipid media, respectively). The obtained findings are consistent with the available experimental data, which validates the accuracy of the calculations.  相似文献   

11.
The pressure-jump method has been used to determine the rate constants for the formation and dissociation of nickel(II) and cobalt(II) complexes with cinchomeronate in aqueous solution at zero ionic strength. The forward and reverse rate constants obtained are kf = 2.27 × 106 M?1 s?1 and kr = 3.81 × 101 s?1 for the nickel(II) complex and kf = 1.23 × 107 M?1 s?1 and kr = 2.66 × 102 s?1 for the cobalt(II) complex at 25°C. The activation parameters of the reactions have also been obtained from the temperature variation study. The results indicate that the rate determining step of the reaction is a loss of a water molecule from the inner coordination sphere of the cation for the nickel(II) complex and the chelate ring closure for the cobalt(II) complex. The influence of the pyridine ring nitrogen atom of the cinchomeronate ligand on the complexation of cobalt(II) ion is also discussed.  相似文献   

12.
Abstract— The characterization and kinetic analysis by laser Rash photolysis of an improved model system for observing chlorophyll a photosensitized electron transfer across a lipid bilayer membrane is described. In this system, the electron acceptor is a water-soluble naphthoquinone, S-(2-methyl-l,4-naphthoquinonyl-3)-glutathione (MGNQ) which is dissolved in the inner aqueous compartments of phospholipid bilayer vesicles, and the electron donor is glutathione (GSH) which is dissolved in the outer aqueous phase. Chlorophyll (Chl) is dissolved in the membrane. Oxidative quenching of the triplet state of Chl by the quinone at the inner surface of the vesicle produces the Chl+ and MGNQ- radicals. Chi+ is reduced by GSH at the outer surface of the vesicle (k= 2.6 × 106M-1 s-1) in competition with the recombination between Chl+. and MGNO- (k= 2.5 × 103 S-1). It is shown that a kinetic mechanism involving competition between recombination, electron transfer across the bilayer, and reduction by donor at the opposite surface can quantitatively account for the decay of Chl+. Electron transport across the bilayer is postulated to occur by a two-step mechanism involving electron exchange between Chl and Chl+ within the lipid monolayer (k= 3.2 × 106 M-1 s-1) and across the bilayer. The rate constant for the latter exchange process approaches 104 s-1 as the concentration of Chl in the bilayer increases. Under appropriate conditions, approximately 20% of all photons absorbed by the vesicle system result in electron transfer across the mcmbrane from GSH to MGNQ.  相似文献   

13.
The mechanism of catalytic dismutation of superoxide anion by copper(II) complex of 12-(4′-nitro)-benzyl-1,4,7,10-tetraazacyclotridecane-11,13-dione was studied by using pulse radiolysis and cyclic voltammetry. The redox potential of Cu(II)/Cu(III) was obtained to be E0=0.590 V (SCE) in solution of 0.5 mol·dm−3 Na2SO4. The rate constant of catalytic dismutation was determined to be kcat=1.9×106 (pH=7.0) and 1.1×106 mol·dm3·s−1 (pH=7.8) by pulse radiolysis and it was suggested that mechanism of catalytic dismutation of O2 is alternate oxidation and reduction of Cu(II) complex by O2.  相似文献   

14.
Formation of N-aminopiperidine (NAPP) in the reaction of monochloramine with piperidine was studied by varying the reagents concentrations, pH and temperature. The study was carried out in diluted solutions, recording simultaneously monochloramine concentration by UV spectrophotometry at 243 nm and hydrazine concentration at 237 nm after treatment with formaldehyde. The presence of two competitive reactions: formation of NAPP and a complex parallel reaction limiting the yield of hydrazine, was established. Reaction products were characterized by GC/MS analysis. The rate constant of NAPP formation and activation parameters were determined, k 1 = 56 × 10?3 M?1 s?1 (25°C) and k 1 = 9.3 × 106 exp(?46.5/RT) M?1 s?1, respectively.  相似文献   

15.
A new method of determining electrochemical kinetic parameters by square-wave polarography was presented, in which the faradaic current at θ/2, θ being the half-period of superimposed square-wave voltage, was used for the analysis. The method gave the following kinetic parameters for the electrode reaction, Zn(II) + 2e(Hg), in aqueous solutions at 25° C: kcθ=0.0052 cm s?1 and αc=0.36 in 1 M KCl, kcθ=0.011 cm s?1 and αc=0.30 in 1 M KBr, and kcθ=0.020 cm s?1 and αc=0.52 in 1 M KNCS. Induced adsorption of Zn(II) on the dropping mercury electrode was suggested in solutions containing thiocyanate ions.  相似文献   

16.
The interaction between the ground and excited states of 1,4-bis[2-(5-phenyloxazolyl)]-benzene and bromomethanes such as CBr4, CHBr3 and CH2Br2 were investigated in benzene. Distinct complex formation was not observed either in the ground state or in the excited states. The excited singlet and triplet states are deactivated by these bromomethanes. The triplet yield is increased on the addition of CHBr3 or CH2Br2, whereas it is decreased on the addition of CBr4. The fluorescence quenching rate constants kq at 23 °C were determined to be 1.6 × 1010 M−1 s−1, 3.6 × 108M−1s−1 and 2.4 × 107M−1s−1 for CBr4, CHBr3 and CH2Br2 respectively. The rate constants kST′ of the enhanced intersystem crossing associated with the fluorescence quenching were evaluated from emission—absorption flash photolysis experiments as 3.0 × 108 M−1s−1, 1.9 × 108 M−1s−1 and 5.1 × 107 M−1s−1 for CBr4, CHBr3 and CH2Br2 respectively. kST′ increases with increasing number of bromine atoms contained in the quencher, so that the enhanced intersystem crossing is due to the external heavy-atom effect of the quencher. The apparent triplet yield for the quenching system depends not only on kST′ but also on the rates of the other non-radiative processes. This is the reason why the apparent triplet yield does not necessarily increase on fluorescence quenching by bromomethanes.  相似文献   

17.
The extraction of copper(II) ions from ammonia solutions with a new β-diketone extractant, DX-510A, has been studied. Kinetic features of the copper(II) extraction and back extraction have been established: the reaction orders have been determined, and extraction and stripping rate constants have been calculated to be ke1 = 4.14 × 10–2 s–1 and kbe1 = 3.20 × 10–2 s–1, respectively. It has been demonstrated that the extraction of copper(II) ions is not accompanied by the coextraction of ammonia. The type of extracted complex has been determined and its formula has been suggested.  相似文献   

18.
The degradation of two endocrine disrupting compounds: n-butylparaben (BP) and 4-tert-octylphenol (OP) in the H2O2/UV system was studied. The effect of operating variables: initial hydrogen peroxide concentration, initial substrate concentration, pH of the reaction solution and photon fluency rate of radiation at 254 nm on reaction rate was investigated. The influence of hydroxyl radical scavengers, humic acid and nitrate anion on reaction course was also studied. A very weak scavenging effect during BP degradation was observed indicating reactions different from hydroxyl radical oxidation. The second-order rate constants of BP and OP with OH radicals were estimated to be 4.8×109 and 4.2×109 M?1 s?1, respectively. For BP the rate constant equal to 2.0×1010 M?1 s?1was also determined using water radiolysis as a source of hydroxyl radicals.  相似文献   

19.
The study of D(?)-ribose complexing with calcium in aqueous solutions less than 1.64 × 10?1M by potentiometric measurements with a calcium selective electrode afforded the value of K1 = 1.70 liters × mole?1 (SD = 1.05 × 10?3). Numerical analysis indicated that complex species with 1:1 and 1:2 calcium to D(-)-ribose ratios are present simultaneously: k1 = 1.13 liters × mole?1 and K2 = 8.47 liters × mole?1 (SD = 0.95 × 10?3).In methanolic medium 1.24 × 10?2M with regard to calcium chloride both stoichiometric proportions were evidenced. A large error accompanying the stability constant K1 = 28 kg × mole?1 (RSD = 82%) renders unreasonable the K2 value obtained from the product K1 × K2 = 96.5 kg2 × mole?2.The results are discussed with respect to the data published for more concentrated (1.27 M) aqueous solutions obtained on the basis of 1H-NMR spectroscopic investigations.  相似文献   

20.
《Chemical physics letters》1986,127(4):347-353
Infrared multiphoton photooxidation of NH2D in NH3 mixtures was observed to produce exclusively HDO, suggesting a single step deuterium separation efficiency of [D2O]/([D20]+[H2O]) ⩾ 50% which is significantly higher than that of the theoretical value, 33%. The results are explained by the large rate differences in the radical scavenging steps, i.e. k(D+O2) = 2.2 × 109M−1 s−1, k(NH2+O2) ⩽ 5 × 106 M−1 s−1 and k(NH2+NH2)=1.6 × 1010 M−1 s−1. With Ti solid powder as a catalyst, we observed that the formation yields of HDO are at least three to four times higher than those without a catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号