首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A sensitive and specific HPLC-UV method was developed for the simultaneous determination of major active components of danshen in rat plasma. Both water-soluble and lipid-soluble compounds were included, i.e. danshensu, salvianolic acid B and tanshinone IIA. Protocatechuic aldehyde and diazepam were used as internal standards. The chromatographic separation was achieved on a reversed-phase C(18) column by gradient elution using acetonitrile and 0.025% (v/v) phosphoric acid solution as mobile phase, at a flow rate of 1.0 mL/min. Salvianolic acid B, danshensu and internal standards were detected at 281 nm, while the detection of tanshinone IIA was carried out at 272 nm. All calibration curves showed good linearity (r(2) > 0.999) within test ranges. The limit of detection and the limit of quantification for danshensu, salvianolic acid B and tanshinone IIA in plasma were 0.065, 0.043, 0.022, 0.131, 0.085 and 0.044 microg/mL, respectively. This is the first report on the determination and pharmacokinetic study of danshensu, salvianolic acid B and tanshinone IIA in rat plasma and the results indicated that this method was reliable for the determination of the major active components of danshen in rat plasma.  相似文献   

2.
A sensitive and simple HPLC method has been developed and validated for the determination of oxyresveratrol (trans-2,4,3',5'-tetrahydroxystilbene, OXY) and resveratrol (trans-3,5,4'-trihydroxystilbene, RES) in rat plasma. The plasma samples were extracted with ethyl acetate and analyzed using HPLC on an Aglient Zorbax SB-C(18) column (250 x 4.6 mm, 5 microm) at a wavelength 320 nm, with a linear gradient of (A) acetonitrile and (B) 0.5% aqueous acetic acid (v/v), at a flow rate of 1.0 mL/min. The method was linear over the range of 0.1265-25.3 microg/mL for OXY and 0.117-23.4 microg/mL for RES. The extraction recovery for OXY, RES and internal standard ranged from 71.1 to 88.3%. The intra- and inter-day precisions were better than 10%, and the accuracy ranged from 89 to 108%. The validated method was used to study the pharmacokinetic profiles of OXY and RES in rat plasma after oral administration of Smilax china root extract.  相似文献   

3.
A rapid, sensitive and selective liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for the simultaneous determination of tanshinone I, dihydrotanshinone I, tanshinone IIA and cryptotanshinone, the active components of Salvia miltiorrhiza in rat plasma, was developed. After liquid-liquid extraction with tariquidar as an internal standard, tanshinone I, dihydrotanshinone I, tanshinone IIA and cryptotanshinone were eluted from an Atlantis dC18 column within 5 min with a mixture of methanol and ammonium formate (10 mm, pH 6.5; 85:15, v/v). The analytes were detected by an electrospray ionization tandem mass spectrometry in the selected reaction monitoring (SRM) mode. The standard curves were linear (r=0.999) over the concentration range of 0.25-80 ng/mL for tanshinone I, dihydrotanshinone I, tanshinone IIA and cryptotanshinone in rat plasma. The coefficients of variation and the relative errors of tanshinone I, dihydrotanshinone I, tanshinone IIA and cryptotanshinone for intra- and inter-assay at four quality control (QC) concentrations were 1.1-5.1% and -4.0-6.0%, respectively. The lower limit of quantification for tanshinone I, dihydrotanshinone I, tanshinone IIA and cryptotanshinone was 0.25 ng/mL from 100 microL of plasma. This method was successfully applied to the pharmacokinetic study of tanshinone I, dihydrotanshinone I, tanshinone IIA and cryptotanshinone after oral administration of PF2401-SF, the standardized fraction of Salvia miltiorrhiza enriched with tanshinone I, dihydrotanshinone I, tanshinone IIA and cryptotanshinone to male Sprague-Dawley rats.  相似文献   

4.
An HPLC method is described for determination of ferulic acid in rat plasma. The concentration of ferulic acid in rat plasma was determined after deproteinization with acetonitrile using sulfamethoxazole as internal standard. Chromatographic separations were performed on a C(18) stationary phase with a mobile phase composed of acetonitrile-water (16:84, v/v) with 1% glacial acetic acid. The UV detection wavelength was set at 320 nm. The method was successfully applied to the determination of pharmacokinetic parameters in rat plasma after oral administration of Rhizoma Chuanxiong and and its compound preparation Suanzaoren decoctions. The calibration curve was linear over the range 0.0510-4.08 micro g/mL in rat plasma. Within-day and between-day precisions were less than 4.5% RSD. Mean recovery was determined as 96.9%. The limit of quantitation was 0.0510 micro g/mL. The pharmacokinetic parameters of the two preparations were different significantly (p < 0.05), which may attribute to the effects of other ingredients present in Suanzaoren decoction.  相似文献   

5.
A fast, sensitive and reliable ultra performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for simultaneous quantitation and pharmacokinetic study of five tanshinones (tanshinone I, tanshinone IIA, tanshinone IIB, dihydrotanshinone I, cryptotanshinone), the bio‐active ingredients of Huo Luo Xiao Ling Dan (HLXLD) in rat plasma. After liquid–liquid extraction, chromatographic separation was accomplished on a Shim‐pack XR‐ODS column (75 × 3.0 mm, 2.2 µm particles) and eluted with a mobile phase consisting of acetonitrile–0.05% formic acid aqueous solution (80:20, v/v) at a flow rate of 0.4 mL/min, and the total run time was 7.0 min. The detection was performed on a triple quadrupole tandem mass spectrometry equipped with an electrospray ionization source in positive ionization and multiple reaction monitoring mode. The lower limits of quantification were 0.050–0.400 ng/mL for all the analytes. Linearity, precision and accuracy, the mean extraction recoveries and matrix effects all satisfied criteria for acceptance. This validated method was successfully applied to a comparative pharmacokinetic study of five bio‐active components in rat plasma after oral administration of HLXLD or Salvia miltiorrhiza extract in normal and arthritic rats. The results showed that there were different pharmacokinetic characteristics among different groups. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
高效液相色谱法测定大鼠血浆中的原儿茶酸   总被引:3,自引:0,他引:3  
《色谱》2007,25(2):207-210
建立了大鼠血浆中原儿茶酸含量测定的高效液相色谱方法。采用的色谱柱为DiamondsilTM C18 柱(150 mm×4.6 mm,5 μm);流动相为乙腈-水(体积比为9∶91,用H3PO4 调pH至2.5);流速1.2 mL/min;检测波长260 nm;内标为对羟基苯甲酸。原儿茶酸的线性范围为0.050~3.20 mg/L,线性相关系数为0.9978,最低定量限为0.050 mg/L,日内和日间测定的精密度(以相对标准偏差表示)均低于7.0%,准确度(以相对误差表示)为-1.4%~2.6%;在0.050,0.40,3.20 mg/L低、中、高3个添加浓度水平下,血浆样品的提取回收率分别为83.4%,87.3%,91.1%。该方法简便,灵敏,准确,适用于大鼠体内原儿茶酸的药物动力学研究。  相似文献   

7.
A simple and sensitive high-performance liquid chromatographic (HPLC) method is developed for the determination of osthole in rat plasma and applied to a pharmacokinetic study in rats after administration of Fructus Cnidii extract. After addition of fluocinonide as an internal standard, plasma samples are extracted with diethyl ether. HPLC analysis of the extracts is performed on a Hypersil ODS2 analytical column, using methanol-0.4% acetic acid (65:35, v/v) as the mobile phase. The UV detector is set at 322 nm. The standard curve is linear over the range 0.0520-5.20 microg/mL (r = 0.9979). The mean extraction recoveries of osthole at three concentrations were 81.0%, 91.2%, and 90.7%, respectively. The intra- and interday precisions have relative standard deviations from 1.9% to 4.9%. The limit of quantitation is 0.0520 microg/mL. The HPLC method developed can easily be applied to the determination and pharmacokinetic study of osthole in rat plasma after the animals are given the Fructus Cnidii extract. The plasma concentration of osthole from six rats showed a Cmax of 0.776 +/- 0.069 microg/mL at Tmax of 1.0 +/- 0.3 h.  相似文献   

8.
A high-performance liquid chromatographic (HPLC) method for determining lehmannine (LMN) in rat plasma was developed for application in the pharmacokinetics study. The plasma was deproteinized with acetonitrile that contained an internal standard and was separated from the aqueous layer by adding sodium chloride. The HPLC assay was carried out using a VP-ODS column at 40 degrees C. The mobile phase was acetonitrile-0.02 mol/L ammonium acetate buffer-triethylamine (35:65:0.04, v/v/v). The flow rate was 1.0 mL/min. The detection wavelength was set at 220 nm. The method was used to determine the concentration-time profiles of LMN in the plasma following oral administration or bolus injection of LMN aqueous solution. The pharmacokinetic parameters of LMN were calculated for the first time by Drug and Statistics 1.0 program.  相似文献   

9.
A rapid and sensitive high-performance liquid chromatographic (HPLC) method is developed for the determination of tetramethylpyrazine phosphate, an antiplatelet aggregation agent, in 100 microL of dog plasma. Sample preparations are carried out by deproteinization with an internal standard (carbamazepine) solution in acetonitrile. An aliquot of the supernatant (20 microL) is directly injected into an HPLC apparatus with methanol-phosphate buffer (0.01M, pH 3.0) (62:38, v/v) as the mobile phase at a flow rate of 1.0 mL/min. Separation is performed with a C18 column at 30 degrees C. The peak is detected using a UV detector set at 279 nm. The capacity factors are 1.48 for tetramethylpyrazine phosphate and 2.09 for carbamazepine, with a total run time of 10 min. The calibration curve is linear in the 0.2-50-microg/mL range. The limit of detection is 0.05 microg/mL. Mean recoveries are 92.6-98.1%. The within- and between-day variation coefficients are less than 4.9% and 7.5%, respectively. The present method has been successfully used to provide pharmacokinetic data after oral administration of tetramethylpyrazine phosphate pulsincap capsules and immediate-release tablets to dogs.  相似文献   

10.
An improved simple, rapid and accurate HPLC method for quantification of doxorubicin derived from micelle-encapsulated or liposome-encapsulated doxorubicin formulation in rat plasma was described. The mobile phase consisting of a mixture of methanol-water [containing 0.1% formic acid anhydrous and 0.1% ammonia solution (25%), pH 3.0], 60:40, was delivered at a flow rate of 1.0 mL/min. Sample preparation for micelle- or liposome-encapsulated doxorubicin in rat plasma were achieved directly by protein precipitation with acetonitrile. Doxorubicin and daunorubicin (internal standard, IS) were separated on a C(18) reversed-phase HPLC column and quantified by a fluoresence detection with an excitation wavelength of 475 nm and an emission wavelength of 580 nm. The linearity was obtained over the range of 5.0-1000.0 ng/mL and 1.0-200.0 microg/mL for doxorubicin and the lower limit of quantitation was 5.0 ng/mL. For each level of quality control samples, inter- and intra-assay precision was less than 9.6 and 5.1% (relative standard deviation), respectively, and percentage error was within +/-2.6%. The extraction recoveries of doxorubicin in the range of 10 ng/mL to 100 microg/mL in rat plasma were between 94.1 and 105.6%. This method was successfully applied to the pharmacokinetic study of doxorubicin formulations after i.v. administration to rats.  相似文献   

11.
12.
Levonorgestrel and quinestrol, commonly known as EP‐1, has long been used in the control of wild rodents. Up to the present time, however, no method for simultaneous quantification of levonorgestrel and quinestrol in rat plasma has been reported. In the present study, a sensitive reverse‐phase high‐performance liquid chromatography with ultraviolet detection (RP‐HPLC‐UV) method for quantification of levonorgestrel and quinestrol in rat plasma has been developed. It uses a Kromasil ODS C18 column and acetonitrile‐0.1% formic acid (85 : 15, v/v) mobile phase at ambient temperature. The plasma sample was prepared by hexane–isoamyl alcohol extraction (90 : 10, v/v). The flow rate and detection wavelength were 1.0 mL/min and 230 nm. The correlation coefficients were greater than 0.9995 within 0.08–50 μg/mL for levonorgestrel and 0.12–50 μg/mL for quinestrol, and the limits of detection were 0.02 and 0.05 μg/mL for levonorgestrel and quinestrol, respectively. Average recovery ranged from 92.5 to 96.3% and inter‐day RSDs were less than 7.56%. This method can be applied to the further pharmacokinetic study of levonorgestrel and quinestrol in rat plasma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A high-performance liquid chromatographic (HPLC) method coupled with ultraviolet (UV) and electrospray ionization time-of-flight mass spectrometry (ESI-TOF/MS) was established for simultaneous qualitative and quantitative determination of nine phenolic acids and six diterpenoids in Radix et Rhizoma Salviae Miltiorrhizae (RRSM). The optimal chromatographic conditions were achieved on a Zorbax C(18) column by gradient elution with 0.1% (v/v) aqueous formic acid and acetonitrile as mobile phase at the flow rate of 1.0 mL/min. The detection wavelength at 281 nm was chosen to determine the 15 bioactive components, namely danshensu (1), protocatechuic acid (2), protocatechuic aldehyde (3), caffeic acid (4), rosmarinic acid (5), lithospermic acid (6), salvianolic acid B (7), salvianolic acid A (8), salvianolic acid C (9); dihydrotanshinone I (10), cryptotanshinone (11), tanshinone I (12), methylene tanshiqunone (13), tanshinone IIA (14) and miltirone (15). Additionally, LC-ESI-TOF/MS was used to make definite identification of the constituents in samples in comparison with those reference compounds. The validation of the method included tests of linearity, sensitivity, repeatability, stability and recovery. The proposed method was successfully applied to quantify the 15 components in 21 samples; significant variations were demonstrated in the contents of the samples from diverse species and origins. The developed method could be used to effectively and comprehensively evaluate the quality of RRSM for its clinical safety and efficacy.  相似文献   

14.
《Analytical letters》2012,45(17):2672-2680
A fast and sensitive liquid chromatography tandem mass spectrometric method has been developed and validated for the determination of tropisetron in human plasma. The HPLC separation was performed on a Phenomenex Synergi Fusion RP80 column using acetonitrile ?13 mM ammonium acetate – acetic acid (30:70:0.035, v/v) as the isocratic mobile phase. The assay was linear over the concentration range 0.5–128 ng/mL. The intra- and inter-assay precision was less than 11.6% for tropisetron. The method was successfully used to characterize the pharmacokinetic profiles of tropisetron in 20 healthy volunteers after an intravenous infusion of 5 mg tropisetron.  相似文献   

15.
A simple and rapid high-performance liquid chromatographic (HPLC) method with ultraviolet detection has been developed and validated for the simultaneous determination of rifampicin and sulbactam in mouse plasma. Plasma samples were deproteinized with acetonitrile and separated by HPLC on a RP-18 (125 x 4 mm, 5 microm) column and gradient elution with potassium dihydrogen phosphate solution (pH 4.5; 50 mm) and acetonitrile at a flow-rate of 1.0 mL/min. Rifampicin and sulbactam were monitored at 230 nm and confirmed by means of their UV spectra using a diode-array detector. The method was linear at plasma levels from 1 to 100 microg/mL for rifampicin and from 5 to 200 microg/mL for sulbactam. The limits of quantification were 0.6 microg/mL for rifampicin and 4.2 microg/mL for sulbactam. The intra- and inter-day precisions of the method (RSD) were lower than 5% for both compounds. Average recoveries of rifampicin and sulbactam from mice plasma were 98.2 and 89.3%, respectively. The developed method was successfully applied to the determination of the pharmacokinetic profile of both compounds in mice.  相似文献   

16.
A simple, rapid and reliable high-performance liquid chromatographic (HPLC) method was developed and validated for the determination of curcumin in rat plasma. Plasma was precipitated with acetonitrile after addition of the internal standard (IS), 4-hydroxybenzophenone. Separation was achieved on a Waters muBondapak C(18) column (3.9 x 300 mm, 5 microm) using acetonitrile (55%) and citric buffer, pH 3.0 (45%) as the mobile phase (flow rate = 1.0 mL/min). The UV detection wavelength was 300 and 428 nm for IS and curcumin, respectively. The extraction efficiencies were 97.08, 95.69 and 94.90% for 50, 200 and 1000 ng/mL of curcumin in rat plasma, respectively. The calibration curve was linear over the range 0.02-1 microg/mL with a correlation coefficient of r(2) > 0.999. The intra- and inter-day coefficients of variation were less than 13%, and mean intra- and inter-day errors were less than +/-6% at 50, 200 and 1000 ng/mL of curcumin. This assay was successfully applied to the pharmacokinetic studies of both solubilized curcumin and its polymeric micellar formulation in rats. It was found that polymeric micelles increased the half-life of curcumin 162-fold that of solubilized curcumin and increased the volume of distribution (Vd(ss)) by 70-fold.  相似文献   

17.
A simple HPLC method with ultraviolet detection has been developed and validated for the simultaneous determination of haplamine and its metabolites (trans/cis-3,4-dihydroxyhaplamine) in rat. A liquid-liquid extraction was used to extract the compounds from rat plasma. The analysis was performed on a C(18) Nucleosil Nautilus column. The mobile phase consisted of water (A) and a mixture of methanol and acetonitrile (85:15; v/v) (B) used in gradient mode (38-40% B for 10 min, 40-58% B for 49 min, 58-38% B for 1 min, and 38% for 5 min) pumped at 1 mL/min. The calibration curves showed good linearity with correlation coefficients greater than 0.999 for the analytes in the investigated concentration range. The lower limit of detection was 0.007, 0.008 and 0.009 microg/mL and the lower limit of quantification was 0.014, 0.017 and 0.018 microg/mL for haplamine, and trans/cis-3,4-dihydroxyhaplamine, respectively. The method was applied to a preliminary pharmacokinetic study in rats. This method proved to meet fully the standards required of experimental pharmacokinetic studies and should be used in further preclinical investigation.  相似文献   

18.
A specific, sensitive and accurate analytical LC‐MS/MS assay was developed for the simultaneous determination of two steroidal glycosides, tenacissoside H and tenacissoside I, in rat plasma. An Agilent ZORBAX SB‐C18 column was used with an isocratic mobile phase system composed of methanol–water–formic acid (70:30:0.1, v/v/v) at a flow rate of 0.3 mL/min. The analysis was performed on a positive ionization electrospray mass spectrometer via selected reaction monitoring mode scan. One‐step protein precipitation with acetonitrile was chosen to extract the analytes from plasma. The lower limits of quantification were 0.9 ng/mL for tenacissoside H and tenacissoside I. The intra‐ and inter‐day precisions were 2.03–11.56 and 3.76–11.62%, respectively, and the accuracies were <110.28% at all quality control levels. The validated method was applied to a pharmacokinetic study in rats after oral gavage of Marsdenia tenacissima extract. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A reversed-phase high-performance liquid chromatographic (HPLC) assay for calycosin-7-O-beta-D-glucopyranoside in rat plasma and urine with solid-phase extraction (SPE) was developed. Rutin was employed as an internal standard. The mobile phase consisted of acetonitrile-water (16:84, v/v) at a flow rate of 1.0 mL/min. Detection was set at 280 nm. The limit of quantitation of calycosin-7-O-beta-D-glucopyranoside was 0.2 microg/mL in both plasma and urine. The standard curve was linear from 0.2 to 10.0 microg/mL in plasma, and 0.2 to 5.0 microg/mL in urine. Both intra- and inter-day precision of the calycosin-7-O-beta-d-glucopyranoside were determined and their RSD did not exceed 10%. The method was successfully applied to the analysis of samples obtained from a basic pharmacokinetic study, in which calycosin-7-O-beta-d-glucopyranoside was administered orally to rats.  相似文献   

20.
An analytical method based on high-performance liquid chromatographic (HPLC) with ultraviolet (UV) detection was developed for determination of scopolin in rat plasma using aesculin as internal standard (IS). After protein precipitation of plasma sample with methanol, the supernatant was directly injected and analyzed. Chromatographic separation was achieved on a C18 column using methanol and distilled water (22:78, v/v) containing 0.2% (v/v) glacial acetic acid as mobile phase with a column temperature of 30 degrees C. The UV detector was set at 338 nm. The calibration curve was linear over the range of 0.105-13.125 microg/mL with a correlation coefficient of 0.9998. The retention times of aesculin and scopolin were 10.4 and 12.8 min, respectively. The recoveries for plasma samples of 0.105, 4.725 and 13.125 microg/mL were 91.08, 95.30 and 96.10%, respectively. The RSD of intra- and inter-day assay variations was less than 7.35%. The lower limit of detection was 0.03 microg/mL .This HPLC assay is a simple, sensitive and accurate and was successfully applied to the pharmacokinetic study of scopolin in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号