首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Polycyclic aromatic polyketides, such as the tetracyclines and anthracyclines, are synthesized by bacterial aromatic polyketide synthases (PKSs). Such PKSs contain a single set of iteratively used individual proteins for the construction of a highly labile poly-beta-carbonyl intermediate that is cyclized by associated enzymes to the core aromatic polyketide. A unique polyketide biosynthetic pathway recently identified in the marine strain 'Streptomyces maritimus' deviates from the normal aromatic PKS model in the generation of a diverse series of chiral, non-aromatic polyketides. RESULTS: A 21.3 kb gene cluster encoding the biosynthesis of the enterocin and wailupemycin family of polyketides from 'S. maritimus' has been cloned and sequenced. The biosynthesis of these structurally diverse polyketides is encoded on a 20 open reading frames gene set containing a centrally located aromatic PKS. The architecture of this novel type II gene set differs from all other aromatic PKS clusters by the absence of cyclase and aromatase encoding genes and the presence of genes encoding the biosynthesis and attachment of the unique benzoyl-CoA starter unit. In addition to the previously reported heterologous expression of the gene set, in vitro and in vivo expression studies with the cytochrome P-450 EncR and the ketoreductase EncD, respectively, support the involvement of the cloned genes in enterocin biosynthesis. CONCLUSIONS: The enterocin biosynthesis gene cluster represents the most versatile type II PKS system investigated to date. A large series of divergent metabolites are naturally generated from the single biochemical pathway, which has several metabolic options for creating structural diversity. The absence of cyclase and aromatase gene products and the involvement of an oxygenase-catalyzed Favorskii-like rearrangement provide insight into the observed spontaneity of this pathway. This system provides the foundation for engineering hybrid expression sets in the generation of structurally novel compounds for use in drug discovery.  相似文献   

2.
Background: Polycyclic aromatic polyketides, such as the tetracyclines and anthracyclines, are synthesized by bacterial aromatic polyketide synthases (PKSs). Such PKSs contain a single set of iteratively used individual proteins for the construction of a highly labile poly-β-carbonyl intermediate that is cyclized by associated enzymes to the core aromatic polyketide. A unique polyketide biosynthetic pathway recently identified in the marine strain ‘Streptomyces maritimus’ deviates from the normal aromatic PKS model in the generation of a diverse series of chiral, non-aromatic polyketides.Results: A 21.3 kb gene cluster encoding the biosynthesis of the enterocin and wailupemycin family of polyketides from ‘S. maritimus’ has been cloned and sequenced. The biosynthesis of these structurally diverse polyketides is encoded on a 20 open reading frames gene set containing a centrally located aromatic PKS. The architecture of this novel type II gene set differs from all other aromatic PKS clusters by the absence of cyclase and aromatase encoding genes and the presence of genes encoding the biosynthesis and attachment of the unique benzoyl-CoA starter unit. In addition to the previously reported heterologous expression of the gene set, in vitro and in vivo expression studies with the cytochrome P-450 EncR and the ketoreductase EncD, respectively, support the involvement of the cloned genes in enterocin biosynthesis.Conclusions: The enterocin biosynthesis gene cluster represents the most versatile type II PKS system investigated to date. A large series of divergent metabolites are naturally generated from the single biochemical pathway, which has several metabolic options for creating structural diversity. The absence of cyclase and aromatase gene products and the involvement of an oxygenase-catalyzed Favorskii-like rearrangement provide insight into the observed spontaneity of this pathway. This system provides the foundation for engineering hybrid expression sets in the generation of structurally novel compounds for use in drug discovery.  相似文献   

3.
《Chemistry & biology》1997,4(6):433-443
Background: Iterative type II polyketide synthases (PKSs) produce polyketide chains of variable but defined length from a specific starter unit and a number of extender units. They also specify the initial regiospecific folding and cyclization pattern of nascent polyketides either through the action of a cyclase (CYC) subunit or through the combined action of site-specific ketoreductase (KR) CYC CYC subunits. Additional CYCs and other modifications may be necessary to produce linear aromatic polyketides. The principles of the assembly of the linear aromatic polyketides, several of which are medically important, are well understood, but it is not clear whether the assembly of the angular aromatic (angucyclic) polyketides follows the same rules.Results: We performed an in vivo evaluation of the subunits of the PKS responsible for the production of the angucyclic polyketide jadomycin (jad), in comparison with their counterparts from the daunorubicin (dps) and tetracenomycin (tcm) PKSs which produce linear aromatic polyketides. No matter which minimal PKS was used to produce the initial polyketide chain, the JadD and DpsF CYCs produced the same two polyketides, in the same ratio; neither product was angularly fused. The set of jadABCED PKS plus putative jadl CYC genes behaved similarly. Furthermore, no angular polyketides were isolated when the entire set of jad PKS enzymes and Jadl or the jad minimal PKS, Jadl and the TcmN CYC were present. The DpsE KR was able to reduce decaketides but not octaketides; in contrast, the KRs from the jad PKS (JadE) or the actinorhodin PKS (ActIII) could reduce octaketide chains, giving three distinct products.Conclusions: It appears that the biosynthesis of angucyclic polyketides cannot be simply accomplished by expressing the known PKS subunits from artificial gene cassettes under the control of a non-native promoter. The characteristic structure of the angucycline ring system may arise from a kinked precursor during later cyclization reactions involving additional, but so far unknown, components of the extended decaketide PKS. Our results also suggest that some KRs have a minimal chain length requirement and that CYC enzymes may act aberrantly as first-ring aromatases that are unable to perform all of the sequential cyclization steps. Both of these characteristics may limit the widespread application of CYC or KR enzymes in the synthesis of novel polyketides.  相似文献   

4.
Mutasynthesis of enterocin and wailupemycin analogues   总被引:2,自引:0,他引:2  
Inactivation of the novel phenylalanine ammonia lyase gene encP, whose product is a key component in the biosynthetic pathway to benzoyl-coenzyme A (CoA) in the bacterium Streptomyces maritimus, resulted in the loss of production of the benzoate-primed polyketides enterocin and wailupemycin G. A series of cinnamate and benzoate derivatives were administered to the DeltaencP mutant, resulting in the formation of novel analogues bearing p-fluorobenzoate, 2- and 3-thiophenecarboxylate, and cyclohex-1-enecarboxylate residues. Given that the benzoate:CoA ligase EncN was evaluated to have broad in vitro substrate specificity towards aryl acids, the strict starter unit specificity observed in vivo indicates that the enterocin type II polyketide synthase (PKS) exerts selective control over the choice of starter units. This study represents the first mutasynthesis experiments with iterative type II PKSs.  相似文献   

5.
A tylosin ketoreductase reveals how chirality is determined in polyketides   总被引:2,自引:1,他引:1  
Because it controls the majority of polyketide stereocenters, the ketoreductase (KR) is a central target in engineering polyketide synthases (PKSs). To elucidate the mechanisms of stereocontrol, the structure of KR from the first module of the tylosin PKS was determined. A comparison with a recently solved erythromycin KR that operates on the same substrate explains why their products have opposite alpha-substituent chiralities. The structure reveals how polyketides are guided into the active site by key residues in different KR types. There are four types of reductase-competent KRs, each capable of fixing a unique combination of alpha-substituent and beta-hydroxyl group chiralities, as well as two types of reductase-incompetent KRs that control alpha-substituent chirality alone. A protocol to assign how a module will enforce substituent chirality based on its sequence is presented.  相似文献   

6.
BACKGROUND: Recent advances in the molecular biology of polyketide biosynthesis have allowed the engineering of polyketide synthases and the biological ('combinatorial') synthesis of novel polyketides. Additional structural diversity in these compounds could be expected if more diverse polyketide synthases (PKS) could be utilised. Fungal polyketides are highly variable in structure, reflecting a potentially wide range of differences in the structure and function of fungal PKS complexes. Relatively few fungal synthases have been investigated, perhaps because of a lack of suitable genetic techniques available for the isolation and manipulation of gene clusters from diverse hosts. We set out to devise a general method for the detection of specific PKS genes from fungi. RESULTS: We examined sequence data from known fungal and bacterial polyketide synthases as well as sequence data from bacterial, fungal and vertebrate fatty acid synthases in order to determine regions of high sequence conservation. Using individual domains such as beta-ketoacylsynthases (KS), beta-ketoreductases (KR) and methyltransferases (MeT) we determined specific short (ca 7 amino acid) sequences showing high conservation for particular functional domains (e.g. fungal KR domains involved in producing partially reduced metabolites; fungal KS domains involved in the production of highly reduced metabolites etc.). Degenerate PCR primers were designed matching these regions of specific homology and the primers were used in PCR reactions with fungal genomic DNA from a number of known polyketide producing species. Products obtained from these reactions were sequenced and shown to be fragments from as-yet undiscovered PKS gene clusters. The fragments could be used in blotting experiments with either homologous or heterologous fungal genomic DNA. CONCLUSIONS: A number of sequences are presented which have high utility for the discovery of novel fungal PKS gene clusters. The sequences appear to be specific for particular types of fungal polyketide (i.e. non-reduced, partially reduced or highly reduced KS domains). We have also developed primers suitable for amplifying segments of fungal genes encoding polyketide C-methyltransferase domains. Genomic fragments amplified using these specific primer sequences can be used in blotting experiments and have high potential as aids for the eventual cloning of new fungal PKS gene clusters.  相似文献   

7.
Polyketide biosynthesis is catalyzed by polyketide synthase (PKS) and three types of bacterial PKS are known to date. Feeding experiments with isotope-labeled precursors established the polyketide origin of the macrotetrolides, but the labeling pattern cannot be rationalized according to the established PKS paradigm. Genetic analysis of the macrotetrolide biosynthesis unveiled an unprecedented organization for a polyketide gene cluster that features five genes encoding discrete ketoacyl synthase (KS) and four genes encoding discrete ketoreductase (KR) but lacking an acyl carrier protein (ACP). Macrotetrolide biosynthesis is proposed to involve a novel type II PKS that acts directly on acyl CoA substrates, functions noniteratively, and catalyzes both C-C and C-O bond formation. These findings demonstrate once again Nature's versatility in making complex molecules and suggests new strategies for PKS engineering to further expand the scope and diversity of polyketide library. They also should serve as an inspiration in searching for PKS with novel chemistry for combinatorial biosynthesis.  相似文献   

8.
Resistomycin is a bacterial polyphenolic metabolite from Streptomyces resistomycificus with a unique pentacyclic "discoid" ring system that clearly differs from the typical linear or angular architectures of aromatic polyketides. The first comprehensive cyclase amino acid sequence-function correlation revealed that the enzymes directing the nascent polyketide chain into a peri-fused system clearly differ from canonical linear and angular cyclases. All genes that are required and sufficent for resistomycin (rem) biosynthesis were identified through systematic dissection and reconstitution of the type II polyketide synthase (PKS) complex. The minimal rem PKS and the first cyclase were successfully cross-complemented with orthologues from the linear tetracenomycin polyketide pathway, indicating that both dekaketide pathways share early biosynthetic steps. In total three cyclases that are involved in discoid cyclization (RemI, RemF, and RemL) were identified by mutational analyses and in vivo pathway reconstitution. Analyses of the metabolic profiles of mutants expressing incomplete gene sets led to the discovery of a novel tetracenomycin derivative, TcmR1. The most surprising finding is that only the concerted action of the PKS and all three cyclases leads to the discoid ring structure. These results provide strong support for a model according to which the multienzyme complex forms a cage in which the polyketide is shaped, rather than a sequential cyclization of the polyketide chain by individual enzymes.  相似文献   

9.
Yi Tang 《Tetrahedron》2004,60(35):7659-7671
Polycyclic aromatic polyketides such as actinorhodin and tetracenomycin are synthesized from acetate equivalents by type II polyketide synthases (PKS). Their carbon chain backbones are derived from malonyl-CoA building blocks through the action of a minimal PKS module consisting of a ketosynthase, a chain length factor, an acyl carrier protein (ACP) and a malonyl-CoA/ACP transacylase. In contrast to these acetogenic polyketides, the backbones of a few aromatic polyketide natural products, such as the R1128 antibiotics, are primed by non-acetate building blocks. These polyketides are synthesized by bimodular PKSs comprising of a dedicated initiation module, which includes a ketosynthase, acyl transferase and ACP, as well as a minimal PKS module. Recently we showed that regioselectively modified polyketides could be synthesized through the genetic recombination of initiation modules and minimal PKS modules from different polyketide biosynthetic pathways (Tang et al. PLoS Biol. 2004, 2, 227-238). For example, the actinorhodin and tetracenomycin minimal PKSs could accept and elongate unnatural primer units from the R1128 initiation module. In this report we provide further examples of using heterologous bimodular PKSs for the engineered biosynthesis of new aromatic polyketides. In addition to providing insights into the biosynthetic mechanisms of aromatic PKSs, our findings also highlight considerable potential for crosstalk between amino acid catabolism and aromatic polyketide biosynthesis. For example, exogenously supplied unnatural amino acids are efficiently incorporated into bioactive anthraquinone antibiotics.  相似文献   

10.
BACKGROUND: Polyketides are structurally diverse natural products with a range of medically useful activities. Non-aromatic bacterial polyketides are synthesised on modular polyketide synthase multienzymes (PKSs) in which each cycle of chain extension requires a different 'module' of enzymatic activities. Attempts to design and construct modular PKSs that synthesise specified novel polyketides provide a particularly stringent test of our understanding of PKS structure and function. RESULTS: We show that the ketoreductase (KR) domains of modules 5 and 6 of the erythromycin PKS, housed in the multienzyme subunit DEBS3, exert an unexpectedly low level of stereochemical control in reducing the keto group of a synthetic analogue of the diketide intermediate. This led us to construct a hybrid triketide synthase based on DEBS3 with ketosynthase domain ketosynthase (KS)5 replaced by the loading module and KS1. The construct in vivo produced two major triketide stereoisomers, one expected and one surprising. The latter was of opposite configuration at three out of the four chiral centres: the branching alkyl centre was that produced by KS1 and, surprisingly, both hydroxyl centres produced by the reduction steps carried out by KR5 and KR6 respectively. CONCLUSIONS: These results demonstrate that the epimerising activity associated with module 1 of the erythromycin PKS can be conferred on module 5 merely by transfer of the KS1 domain. Moreover, the normally precise stereochemical control observed in modular PKSs is lost when KR5 and KR6 are challenged by an unfamiliar substrate, which is much smaller than their natural substrates. This observation demonstrates that the stereochemistry of ketoreduction is not necessarily invariant for a given KR domain and underlines the need for mechanistic understanding in designing genetically engineered PKSs to produce novel products.  相似文献   

11.
Regiospecific cyclizations of the nascent poly-beta-ketone backbones dictate the structures of polyketide natural products. The fungal iterative megasynthases use terminal thioesterase/claisen cyclase (TE/CLC) domains to direct the fate of the polyketide chains. In this work, we present two strategies toward redirecting the cyclization steps of fungal PKSs using the Gibberella fujikuroi PKS4. First, inactivation or removal of the TE/CLC domain resulted in the synthesis of the new polyketide SMA93 2. Complementation of the mutant PKS4 with a standalone TE/CLC domain restored the regioselective cyclization steps of PKS4 and led to the synthesis of SMA76 1, demonstrating that cyclization enzymes can interact with the megasynthase in trans. This led to the second approach in which various dissociated, bacterial tailoring enzymes were added to the megasynthase in trans. Addition of the act KR led to the synthesis of mutactin 3, while the addition of first ring and second ring cyclases yielded anthraquinone compounds DMAC 5 and SEK26 6. The cooperative activities of fungal and bacterial PKS components are especially important and enable synthesis of polyketides utilizing enzymes from two distinct families of PKSs.  相似文献   

12.
The biosynthesis of polyketides by type I modular polyketide synthases (PKS) relies on co-ordinated interactions between acyl carrier protein (ACP) domains and catalytic domains within the megasynthase. Despite the importance of these interactions, and their implications for biosynthetic engineering efforts, they remain poorly understood. Here, we report the molecular details of the interaction interface between an ACP domain and a ketoreductase (KR) domain from a trans-acyltransferase (trans-AT) PKS. Using a high-throughput mass spectrometry (MS)-based assay in combination with scanning alanine mutagenesis, residues contributing to the KR-binding epitope of the ACP domain were identified. Application of carbene footprinting revealed the ACP-binding site on the KR domain surface, and molecular docking simulations driven by experimental data allowed production of an accurate model of the complex. Interactions between ACP and KR domains from trans-AT PKSs were found to be specific for their cognate partner, indicating highly optimised interaction interfaces driven by evolutionary processes. Using detailed knowledge of the ACP:KR interaction epitope, an ACP domain was engineered to interact with a non-cognate KR domain partner. The results provide novel, high resolution insights into the ACP:KR interface and offer valuable rules for future engineering efforts of biosynthetic assembly lines.

The interaction epitope between a cognate KR–ACP domain pairing from a trans-AT polyketide synthase is elucidated in molecular detail, providing unique insights into recognition and specificity of the interface.  相似文献   

13.
Resistomycin is a pentacyclic polyketide metabolite of Streptomyces resistomycificus that exhibits a variety of pharmacologically relevant properties. While virtually all bacterial aromatic polyketides can be grouped into linear and angular polyphenols, resistomycin has a unique "discoid" ring system. We have successfully identified the entire gene cluster encoding resistomycin biosynthesis by heterologously expressing a pooled cosmid library and screening for the fluorescence of the metabolite produced. The rem gene cluster exhibits several unusual features of the type II PKS involved, most remarkably a putative MCAT with highest homology to AT domains from modular PKSs. In addition, we provide the first insight into the molecular basis of a unique mode of cyclization giving rise to a discoid polyketide.  相似文献   

14.
BACKGROUND: Polyketide synthases (PKSs) are bacterial multienzyme systems that synthesize a broad range of natural products. The 'minimal' PKS consists of a ketosynthase, a chain length factor, an acyl carrier protein and a malonyl transferase. Auxiliary components (ketoreductases, aromatases and cyclases are involved in controlling the oxidation level and cyclization of the nascent polyketide chain. We describe the heterologous expression and reconstitution of several auxiliary PKS components including the actinorhodin ketoreductase (act KR), the griseusin aromatase/cyclase (gris ARO/CYC), and the tetracenomycin aromatase/cyclase (tcm ARO/CYC). RESULTS: The polyketide products of reconstituted act and tcm PKSs were identical to those identified in previous in vivo studies. Although stable protein-protein interactions were not detected between minimal and auxiliary PKS components, kinetic analysis revealed that the extended PKS comprised of the act minimal PKS, the act KR and the gris ARO/CYC had a higher turnover number than the act minimal PKS plus the act KR or the act minimal PKS alone. Adding the tcm ARO/CYC to the tcm minimal PKS also increased the overall rate. CONCLUSIONS: Until recently the principal strategy for functional analysis of PKS subunits was through heterologous expression of recombinant PKSs in Streptomyces. Our results corroborate the implicit assumption that the product isolated from whole-cell systems is the dominant product of the PKS. They also suggest that an intermediate is channeled between the various subunits, and pave the way for more detailed structural and mechanistic analysis of these multienzyme systems.  相似文献   

15.
A discrete acyl carrier protein (ACP) bearing a photolabile nonhydrolysable carba(dethia) malonyl pantetheine cofactor was chemoenzymatically prepared and utilised for the trapping of biosynthetic polyketide intermediates following light activation. From the in vitro assembly of the polyketides SEK4 and SEK4b, by the type II actinorhodin “minimal” polyketide synthase (PKS), a range of putative ACP-bound diketides, tetraketides, pentaketides and hexaketides were identified and characterised by FT-ICR-MS, providing direct insights on active site accessibility and substrate processing for this enzyme class.  相似文献   

16.
Trans‐AT polyketide synthases (PKSs) are a family of biosynthetically versatile modular type I PKSs that generate bioactive polyketides of impressive structural diversity. In this study, we detected, in the genome of several bacteria a cryptic, architecturally unusual trans‐AT PKS gene cluster which eluded automated PKS prediction. Genomic mining of one of these strains, the model methylotroph Methylobacterium extorquens AM1, revealed unique epoxide‐ and cyclopropanol‐containing polyketides named toblerols. Relative and absolute stereochemistry were determined by NMR experiments, chemical derivatization, and the comparison of CD data between the derivatized natural product and a synthesized model compound. Biosynthetic data suggest that the cyclopropanol moiety is generated by carbon–carbon shortening of a more extended precursor. Surprisingly, a knock‐out strain impaired in polyketide production showed strong inhibitory activity against other methylobacteria in contrast to the wild‐type producer. The activity was inhibited by complementation with toblerols, thus suggesting that these compounds modulate an as‐yet unknown methylobacterial antibiotic.  相似文献   

17.
Polyketides are assembled by the polyketide synthases (PKS) through a common mechanism, the condensation of small carboxylic acids. However, a large structural variety exists within these molecules, paralleled by their different bioactivities. Structural differences in polyketides mostly stem from variations in the number of elongation cycles, in the extender unit incorporated and the extent of processing occurring during each cycle. A significant fraction of polyketides is made in bacteria by modular PKSs, which direct polyketide synthesis on a protein template, where each module is responsible for selecting, incorporating and processing the appropriate carboxylate unit. Since their discovery in the early nineties, the architecture of modular PKSs and their modus operandi have attracted efforts by several laboratories to reprogram PKSs to produce tailor-made polyketides. The availability of a growing number of modular PKSs of defined sequence, and of well-developed model systems for the in vitro and in vivo analysis of these enzymes, has led to the successful production of many novel polyketides after genetic manipulation of the appropriate PKS. We discuss the different strategies that are followed for the construction of functional "hybrid" systems, with particular emphasis on what can be done in terms of generating chemical diversity, highlighting also the limitations of our current understanding. The prospects of generating novel useful polyketides by genetic engineering are also discussed.  相似文献   

18.
The chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) produces a variety of plant secondary metabolites with remarkable structural diversity and biological activities (e.g., chalcones, stilbenes, benzophenones, acrydones, phloroglucinols, resorcinols, pyrones, and chromones). Here we describe an octaketide-producing novel plant-specific type III PKS from aloe (Aloe arborescens) sharing 50-60% amino acid sequence identity with other plant CHS-superfamily enzymes. A recombinant enzyme expressed in Escherichia coli catalyzed seven successive decarboxylative condensations of malonyl-CoA to yield aromatic octaketides SEK4 and SEK4b, the longest polyketides known to be synthesized by the structurally simple type III PKS. Surprisingly, site-directed mutagenesis revealed that a single residue Gly207 (corresponding to the CHS's active site Thr197) determines the polyketide chain length and product specificity. Small-to-large substitutions (G207A, G207T, G207M, G207L, G207F, and G207W) resulted in loss of the octaketide-forming activity and concomitant formation of shorter chain length polyketides (from triketide to heptaketide) including a pentaketide chromone, 2,7-dihydroxy-5-methylchromone, and a hexaketide pyrone, 6-(2,4-dihydroxy-6-methylphenyl)-4-hydroxy-2-pyrone, depending on the size of the side chain. Notably, the functional diversity of the type III PKS was shown to evolve from simple steric modulation of the chemically inert single residue lining the active-site cavity accompanied by conservation of the Cys-His-Asn catalytic triad. This provided novel strategies for the engineered biosynthesis of pharmaceutically important plant polyketides.  相似文献   

19.
Following the biosynthesis of polyketide backbones by polyketide synthases (PKSs), post‐PKS modifications result in a significantly elevated level of structural complexity that renders the chemical synthesis of these natural products challenging. We report herein a total synthesis of the widely used polyketide insecticide spinosyn A by exploiting the prowess of both chemical and enzymatic methods. As more polyketide biosynthetic pathways are characterized, this chemoenzymatic approach is expected to become readily adaptable to streamlining the synthesis of other complex polyketides with more elaborate post‐PKS modifications.  相似文献   

20.
A system is reported for the recombinant expression of individual ketoreductase (KR) domains from modular polyketide synthases (PKSs) and scrutiny of their intrinsic specificity and stereospecificity toward surrogate diketide substrates. The eryKR(1) and the tylKR(1) domains, derived from the first extension module of the erythromycin PKS and the tylosin PKS, respectively, both catalyzed reduction of (2R, S)-2-methyl-3-oxopentanoic acid N-acetylcysteamine thioester, with complete stereoselectivity and stereospecificity, even though the substrate is not tethered to an acyl carrier protein or an intact PKS multienzyme. In contrast, and to varying degrees, the isolated enzymes eryKR(2), eryKR(5), and eryKR(6) exercised poorer control over substrate selection and the stereochemical course of ketoreduction. These data, together with modeling of diketide binding to KR(1) and KR(2), demonstrate the fine energetic balance between alternative modes of presentation of ketoacylthioester substrates to KR active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号