首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Summary The first-order polarized basis sets for the use in high-level-correlated investigations of molecular electric properties have been generated for Pb, Bi, Po, and At. The performance of the standard [10.17.14.5/13.11.8.2] and extended [20.17.14.9/13.11.8.4] basis sets has been examined in nonrelativistic and quasirelativistic calculations for atoms and simple closed-shell hydrides. The relativistic contributions to electric dipole properties of those systems have been evaluated by using the recently developed quasirelativistic scheme. The predicted dipole polarizability of At is in good agreement with the results of other relativistic calculations. The calculated quasirelativistic dipole moments of BiH3 (–0.499 a.u.), PoH2 (–0.207 a.u.), and AtH (+0.036 a.u.) involve a significant relativistic contribution which amounts to —0.230 a.u., –0.177 a.u., and –0.097 a.u., respectively. The basis set details append this paper. They are also available as a part of the basis set library of the MOLCAS system.  相似文献   

3.
Relativistic basis sets for first-row atoms have been constructed by using the near-Hartree–Fock (nonrelativistic) eigenvectors calculated by Partridge. These bases generate results of near-Dirac–Hartree–Fock quality. Relativistic total and orbital energies, relativistic corrections to the total energy, and magnetic interaction energies for the first-row atoms have been presented. The smallest Gaussian expansions (13s8 p expansions) yield Dirac–Hartree–Fock total energies accurate through six significant digits, while the largest expansions (18s13p expansions) give these energies accurate through seven significant digits. These results are more accurate than some of the results reported earlier, particularly for the open-shell atoms, indicating that the basis employed is reasonably economical for relativistic calculations. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
We report on the development and testing of large polarized basis sets (LPolX, where X is the element symbol) for accurate calculations of linear and nonlinear electric properties of molecules. The method used to generate LPolX sets is based on our studies of the analytic dependence of Gaussian functions on external time‐independent and time‐dependent electric fields. At variance with the earlier investigations of small, highly compact (ZPolX) basis sets for moderately accurate calculations of electric properties of large molecules, the present goal is to obtain basis sets that are nearly saturated with respect to the selected class of electric properties and can be used for accurate studies of interaction‐induced properties. This saturation makes the LPolX sets also useful in calculations of optical properties for chiral molecules. In this article, the LPolX sets are generated for X = H, C, N, O, and F, and examined in calculations of linear and nonlinear electric properties of four standard test systems: HF, N2, CO, and HCN. The study of the performance of LPolX basis sets has been carried out at different levels of approximation ranging from the SCF HF method to highly correlated CCSD(T) approach. The results obtained in this study compare favorably with accurate reference data and show a high level of saturation of LPolX basis sets with respect to the polarization effect due to external electric fields. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

5.
We investigate the optimization of Gaussian basis sets for relativistic calculations within the framework of the restricted Dirac-Hartree-Fock (DHF) method for atoms. We compare results for Rn of nonrelativistic and relativistic basis set optimizations with a finite nuclear-size. Optimization of separate sets for each spin-orbit component shows that the basis set demands for the lower j component are greater than for the higher j component. In particular, the p 1/2 set requires almost as many functions as the s 1/2 set. This implies that for the development of basis sets for heavy atoms, the symmetry type for which a given number of functions is selected should be based on j, not on l, as has been the case in most molecular calculations performed to date.  相似文献   

6.
The influence of relativistic effects on the properties of uranium hexafluoride was considered. Detailed comparison of the spectrum of one-electron energies obtained in the nonrelativistic (by the Hartree-Fock method), relativistic (by the Dirac-Fock method), and scalar-relativistic (using a relativistic potential of the uranium atom core) calculations was carried out. The methods of optimization of atomic basis in the LCAO calculations of molecules and crystals are discussed which make it possible to consider distortion of atomic orbitals upon the formation chemical bonds. The influence of the atomic basis optimization on the results of scalar-relativistic calculations of the molecule UF6 properties is analyzed. Calculations of the electronic structure and properties of UO2 crystals with relativistic and nonrelativistic pseudopotentials are fulfilled.  相似文献   

7.
Summary The technique developed earlier for the generation of the so-called first-order polarized basis sets for accurate non-relativistic calculations of molecular electric properties is used to obtain similar basis sets suitable for calculations in the Douglas-Kroll no-pair approximation. The corresponding (relativistic) basis sets are devised for atoms of the Groups Ib and IIb of the periodic table and tested in calculations of atomic polarizabilities and dipole moments of the coinage metal hydrides. Excellent performance of these basis sets has been found in the case of molecular calculations.  相似文献   

8.
Practical methods of generating reliable and economic basis sets for relativistic self-consistent fields (RSCF) calculations are developed. Large component basis sets are generated from constrained optimizations of exponents in the nonrelativistic atomic calculations for light atoms. For heavy atoms, large component basis sets for inner core orbitals are generated by fitting numerical atomic spinors of Dirac-Hartree-Fock calculations with appropriate number of Slater-type functions. Small component basis sets are obtained by using the kinetic balance condition and other computational criteria. With judicious selections of the basis sets, virtual orbitals in RSCF calculations become very similar to those in nonrelativistic calculations, implying that relativistic virtual orbitals can be used in electron correlation calculations in the same manner as the conventional nonrelativistic virtual orbitals. It is also evident that the Koopmans' theorem is also valid in RSCF results.  相似文献   

9.
We have recently developed new nonrelativistic and scalar-relativistic pseudopotentials for the first-row transition metal and several main-group elements. These improved Model Core Potentials were tested on a variety of transition metal complexes to determine their accuracy in reproducing electronic structures, bond lengths, and harmonic vibrational frequencies with respect to both all-electron reference data as well as experimental data. The new potentials are also compared with the previous model core potentials available for the first-row transition metals. The new potentials do a superior job at reproducing atomic data, reproduce molecular data as well as the previous version, and in conjunction with new main-group pseudopotentials that have L-shell structure of the valence basis set, they are slightly faster.  相似文献   

10.
Following the recent studies of basis sets explicitly dependent on oscillatory external electric field we have investigated the possibility of some further truncation of the so-called polarized basis sets without any major deterioration of the computed data for molecular dipole moments, dipole polarizabilities, and related electric properties of molecules. It has been found that basis sets of contracted Gaussian functions of the form [3s1p] for H and [4s3p1d] for the first-row atoms can satisfy this requirement with particular choice of contractions in their polarization part. With m denoting the number of primitive GTOs in the contracted polarization function, the basis sets devised in this article will be referred to as the ZmPol sets. In comparison with earlier, medium-size polarized basis sets (PolX), these new ZmPol basis sets are reduced by 2/3 in their size and lead to the order of magnitude computing time savings for large molecules. Simultaneously, the dipole moment and polarizability data remain at almost the same level of accuracy as in the case of the PolX sets. Among a variety of possible applications in computational chemistry, the ZmPolX are also to be used for calculations of frequencies and intensities in the Raman spectra of large organic molecules (see Part II, this issue).  相似文献   

11.
For the valence 4p orbitals of the first-row transition metal atoms Sc through Zn, Gaussian-type basis functions are developed referring to excited 3d  m 4s 14p 1 electronic configurations. Molecular tests of the present work 4p sets are performed for the Cu atom, the diatomic Cu2 molecule, and Cu9 and Cu13 clusters, and the results are compared with those from two literature sets. Received: 17 January 2000 / Accepted: 30 May 2000 / Published Online: 11 September 2000  相似文献   

12.
Segmented all-electron relativistically contracted (SARC) basis sets are presented for the elements 37Rb–54Xe, for use with the second-order Douglas–Kroll–Hess approach and the zeroth-order regular approximation. The basis sets have a common set of exponents produced with established heuristic procedures, but have contractions optimized individually for each scalar relativistic Hamiltonian. Their compact size and loose segmented contraction, which is in line with the construction of SARC basis sets for heavier elements, makes them suitable for routine calculations on large systems and when core spectroscopic properties are of interest. The basis sets are of triple-zeta quality and come in singly or doubly polarized versions, which are appropriate for both density functional theory and correlated wave function theory calculations. The quality of the basis sets is assessed against large decontracted reference basis sets for a number of atomic and ionic properties, while their general applicability is demonstrated with selected molecular examples.  相似文献   

13.
To elucidate the physical origin of relativistic changes of molecular properties, exact theorems, perturbation theory, and Hartree-Fock-Slater-Pauli calculations are exploited. The relativistic molecular virial theorem offers insight into the relativistic and nonrelativistic, kinetic, and potential energy contributions to the bond energy. In general, there exist two contributions to the relativistic correction of a molecular property: the relativistic change at the nonrelativistic equilibrium geometry and the change of the nonrelativistic property due to the relativistic change of the equilibrium geometry. Sometimes the first and sometimes the second contribution is the dominant one. Accurate numerical results for H+2-like systems are obtained using direct relativistic double perturbation theory. In some cases, near-degenerate perturbation theory is mandatory. Relativistic changes of chemical bond energies are often proportional to the density change in the K-shell when the bond is formed. Relativistic corrections to many properties (and also to the 1s2-correlation energy) are often proportional to Z2α2. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Slater type orbital (STO) basis sets for the atoms Sc-Zn have been derived using a technique based on the distance between subspaces. The accuracy for several properties of these basis sets has been tested. Basis sets studied are of both single- and double-zeta sizes, although this technique can be generalized for any size. Uniform quality criteria through the series of atoms Sc-Zn are difficulty to establish due to the varying number of d electrons. A comparative study at the atomic level of the quality of STO basis sets (both the two new basis sets and Clementi's basis sets) for the first-row transition elements has been carried out. Results show that the new basis sets provide better simulation for several properties. Molecular calculations on compounds with these atoms using a Gaussian expansion fitted according to the new values of optimized STOs are also included. The results obtained are similar to those reported when STO-3G basis set is used.  相似文献   

15.
Summary The basis set polarization method is used to derive the first-order polarized basis sets for Ge through Br for calculations of atomic and molecular electric properties. The performance of the [15.12.9/9.7.4] GTO/CGTO basis sets generated in this study is verified in calculations of atomic dipole polarizabilities and dipole moments and polarizabilities of the third-row atom hydrides. Whenever accurate reference data are available for comparison, the excellent performance of the derived first-order polarized basis sets is demonstrated. The role of the core polarization and relativistic contributions to atomic and molecular is also investigated. The detailed basis set data for Ge through Br are given in Appendix.  相似文献   

16.
The requirements necessary to extend an ECP basis set for the calculation of electric and linear optical properties to the transition metals are studied. Previously an augmentation of the SBK basis set for 39 elements with s and p electron only valences (H-Rn, excluding Ga, In, and Tl) [J. Comput. Chem., 2005, 26, 1464-1471] was presented. In this work, electric dipole moments, polarizabilities, and anisotropies of selected metal hydrides, sulfides, and bromides, cisplatin, and the Fe, Ru, and Os metallocene derivatives along with many other systems are calculated and discussed. ECP calculations of molecules containing 3d and 4d metal centers among main group atoms have good agreement, often within 1-2% of the all-electron result at the time-dependent Hartree-Fock (TDHF)/Sadlej level of theory. Molecules with a 5d metal center have a large difference from and are more accurate than the all-electron results due to the inclusion of relativistic effects in the ECPs. The polarizability as calculated with and without ECPs of metallic clusters and surfaces is increasingly different as atomic number increases, again due to a lack of relativistic effects in the all-electron calculations. The augmented ECP calculations are consistent with relativistic all-electron results, while the Sadlej calculations are consistent with other nonrelativistic results. Both relativistic and basis set effects are less noticeable when the metal is in a formally positive state.  相似文献   

17.
18.
The performance of effective core potentials adjusted at the Hartree-Fock level but applied in density functional calculations has been tested in a set of calculations using various basis sets and/or core potentials. Test molecules have been the first-row transition-metal carbonyls Cr(CO)6, Fe(CO)5, and Ni(CO)4 and the second-row carbonyls Mo(CO)6, Ru(CO)5, and Pd(CO)4. Only “small-core” potentials have been used, and these are able to reproduce molecular structures and bond energies from all-electron calculations. Relativistic effects have been estimated for the second-row carbonyls by using quasi-relativistic core potentials. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
The major relativistic effects are included into the model potential (MP) method of Bonifacic and Huzinaga. The effects are incorporated on the level of Cowan and Griffin's relativistic Hartree–Fock (RHF) method. The model potential parameters are determined using the results of nonrelativistic Hartree–Fock (NHF) and RHF calculations. A new scheme of selection of the basis functions for use in atomic and molecular MP calculations is proposed. To obtain agreement with the Hartree–Fock calculations on AgH and Ag2, the 4p shell has to be included explicitly in the MP calculations. The explicit treatment of the 4p electrons and the resulting reduction of the core size are necessary in order to overcome difficulties with approximate representation of the large 4p–4d core-valence interactions on the MP level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号