共查询到18条相似文献,搜索用时 78 毫秒
1.
快速溶剂萃取-气相色谱-串联质谱法分析海洋沉积物中16种多环芳烃 总被引:2,自引:0,他引:2
建立了快速溶剂萃取(ASE)-气相色谱-串联质谱(GC-MS/MS)分析海洋沉积物中16种多环芳烃(PAHs)的分析方法。样品由正己烷-丙酮(1∶1,v/v)溶液萃取,经无水硫酸钠脱水、氮吹浓缩后,采用硅胶固相萃取小柱进行净化,然后经HP-5MS色谱柱(30 m×0.25 mm×0.25 μm)分离,在电子轰击电离源下以多反应监测(MRM)模式进行检测,内标法定量。分析结果表明,16种PAHs在0.01~1.00 mg/L范围内线性关系良好,相关系数(R)大于0.997;目标物的加标回收率为75.8%~97.8%;日内与日间精密度(RSD)均小于10%。当取样量为20.0 g时,16种PAHs的方法检出限为0.048~0.234 μg/kg。该法快速、准确、稳定,能够满足海洋沉积物中痕量PAHs的测定。 相似文献
2.
气相色谱-串联质谱法测定牛奶中多氯联苯及多环芳烃 总被引:3,自引:0,他引:3
建立了快速测定牛奶中20种多氯联苯(PCBs)和多环芳烃(PAHs)的气相色谱-串联质谱(GC-MS/MS)分析方法。目标化合物用正己烷提取3次,Cleanert Ba P-SPE固相萃取柱净化,GC-MS/MS测定。结果表明,20种目标物在5~200μg/L范围内呈良好线性,线性相关系数均大于0.99,方法定量下限为1.0μg/kg。在1.0,2.0,5.0μg/kg 3个加标水平下的平均回收率为67.3%~106.9%,相对标准偏差(RSD)为3.1%~13.9%。该方法简便、快速、准确,可用于牛奶中多氯联苯和多环芳烃残留的检测,为牛奶的质量控制和安全评价提供了保证。 相似文献
3.
建立了气相色谱-串联质谱同时检测卷烟滤嘴中15种多环芳烃的方法。卷烟滤嘴用二氯甲烷振荡萃取后,经0.22μm有机相滤膜过滤,采用DB-5MS色谱柱(30 m×0.25 mm,0.25μm)进行分离,电子轰击源、正离子模式下以多反应监测模式进行检测,内标法进行定量。15种多环芳烃(苊烯、苊、芴、菲、蒽、荧蒽、芘、苯并[a]蒽、屈、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、二苯并[a,h]蒽、苯并[g,h,i]苝和茚并[1,2,3-c,d]芘)的线性关系良好,相关系数(R~2)为0.991 4~0.999 9。15种多环芳烃在低、中、高3个添加水平下的平均回收率为81.6%~111.2%;除了芴在低添加水平时相对标准偏差为19.2%外,其他相对标准偏差均小于16%。15种多环芳烃的检出限为0.02~0.24 ng/滤嘴,定量限为0.04~0.80 ng/滤嘴。方法前处理简便,具有快速、准确、灵敏度高及重复性好的优点,适用于卷烟滤嘴中多环芳烃的分析。 相似文献
4.
建立了加速溶剂萃取-固相萃取净化-气相色谱/质谱法同时测定土壤中16种多环芳烃的方法。土壤样品经正己烷-丙酮提取,经无水Na2SO4脱水、氮吹浓缩后,弗罗里土小柱净化,采用气相色谱/质谱检测,内标法定量。结果表明:该方法在质量浓度0.4~10μg/mL范围内线性良好,相关系数(r2)大于0.9962,检出限为4.8~25μg/kg,定量限为19.2~100μg/kg;在0.05,0.15,0.40 mg/kg 3个加标水平下的平均回收率为55.4%~129.0%,相对标准偏差为1.5%~11%。采用该方法检测土壤样品,除苊烯、苊、芴3种多环芳烃未检出外,其他13种多环芳烃均有检出,其含量范围在6.6~86μg/kg。 相似文献
5.
6.
分散固相萃取-气相色谱-串联质谱法测定蔬菜中多环芳烃及卤代多环芳烃 总被引:1,自引:0,他引:1
建立了同时检测蔬菜中16种多环芳烃(PAHs)和11种卤代多环芳烃(X-PAHs)污染水平的分散固相萃取-气相色谱-串联质谱(GC-MS/MS)分析方法。样品中的多环芳烃和卤代多环芳烃经正己烷提取,N-丙基乙二胺吸附剂(PSA)和十八烷基键合硅胶吸附剂(C18)分散固相萃取净化剂净化,气相色谱-串联质谱方法测定,外标法定量。16种PAHs和11种X-PAHs在50,100和200μg/kg添加浓度下的回收率为74.7%~115.1%,相对标准偏差为1.6%~15.3%,方法检出限为0.03~7.4μg/kg。 相似文献
7.
建立塑胶玩具中多环芳烃的气相色谱–质谱检测方法。样品用四氢呋喃溶剂超声提取60 min,提取液以乙腈净化。以DB–5MS色谱柱为分离柱,柱温程序:70℃保持1 min,以10℃/min升温至240℃,保持2 min,然后以8℃/min升温至280℃,保持5 min。16种多环芳烃的质量浓度在0.002~0.18 mg/L范围内线性良好,相关系数均大于0.991,定量限为0.12~0.20 mg/kg。测量结果的相对标准偏差为4.2%~7.4%(n=6),加标回收率为84.9%~116.7%。该方法简单、快速、准确、重现性好,能够满足目前对塑胶玩具中多环芳烃的检测要求。 相似文献
8.
超声提取/气相色谱-质谱法测定海洋生物中的多环芳烃 总被引:2,自引:0,他引:2
建立了海洋生物体中16种优先控制多环芳烃的超声提取/气相色谱-质谱测定方法,对海洋鱼类、虾类、贝类和蟹类等生物样品的提取、净化和色谱质谱条件进行了优化。以正己烷-二氯甲烷(2∶1)作为溶剂进行超声提取,提取液经60%硫酸溶液和中性氧化铝-弗罗里硅土混合层析柱净化,采用气相色谱-质谱法定性和定量分析。在优化条件下,16种多环芳烃的线性范围为0.005~0.500 mg/L,相关系数(r)不低于0.998 4,检出限为0.03~0.28μg/kg。加标水平为2、20、100μg/kg时,平均加标回收率分别为55%~118%、80%~114%和79%~113%,相对标准偏差(RSDs,n=6)均小于10%。该方法快速、准确、灵敏度高、重复性好,能满足海洋生物体中持久性有机污染物分析的要求。 相似文献
9.
加速溶剂萃取-固相萃取净化-气相色谱/质谱法测定沉积物中多氯联苯和多环芳烃 总被引:1,自引:0,他引:1
建立了加速溶剂萃取-固相萃取净化-气相色谱/三重四极杆串联质谱联用(ASE-SPE-GC-QqQ-MS/MS)法同时测定沉积物中28种多氯联苯(PCBs)和16种多环芳烃(PAHs)。对萃取、净化及仪器分析条件进行了优化。优化条件为:ASE萃取温度90℃,萃取时间6 min;净化小柱为硅胶-Florisil固相复合柱(填料自下而上为弗罗里硅土、0.7 g活化硅胶、1 g无水硫酸钠);洗脱溶液为丙酮-正己烷(1∶19,V/V)混合溶液,洗脱速率为0.6 mL/min。PCBs和PAHs在2~500μg/L和5~1000μg/L浓度范围内的线性相关系数(R2)分别为0.9987~0.9999和0.9939~0.9999;PCBs和PAHs方法检出限分别为0.001~0.08 ng/g和0.07~0.45 ng/g;定量限为0.003~0.25 ng/g和0.24~1.67 ng/g;实际样品平均加标回收率为95.6%~125.7%和70.4%~124.7%;方法相对标准偏差(n=6)为0.7%~6.4%和1.1%~12.8%。运用本方法对滇池入湖河口表层沉积物样品进行测定,该区域PCBs单体浓度为n.d.(未检出)~0.13 ng/g,PAHs单体浓度为0.79~131.12 ng/g。 相似文献
10.
气相色谱-三重四极杆串联质谱法检测环境空气中的多环芳烃 总被引:3,自引:0,他引:3
建立了气相色谱-三重四极杆串联质谱检测环境空气中多环芳烃的方法,并利用同位素稀释法对多环芳烃进行了测定。将该方法应用于华南地区某大型石化企业周边环境空气中多环芳烃的检测,并与气相色谱-质谱方法进行了对比。结果表明,该方法的仪器检出限(0.01~0.15 μg/L)和定量限(0.03~1.5 μg/L)均优于气相色谱-质谱法(0.1~0.8 μg/L和0.3~3.5 μg/L),并有更好的灵敏度与选择性。当利用气相色谱-质谱作为检测手段时,回收率指示物氘代菲和进样内标六甲基苯均受到了杂质的严重干扰,影响了定量结果的准确性,而三重四极杆串联质谱很好地解决了这些问题。实际样品分析时,标准曲线中16种多环芳烃相对响应因子的相对标准偏差为2.60%~15.6%,氘代化合物的回收率为55.2%~82.3%,空白加标样品的回收率为98.9%~111%,平行样品的相对标准偏差为6.50%~18.4%,采样空白含量范围为未检出~44.3 pg/m3,实验室空白含量范围为未检出~36.5 pg/m3。上述研究表明,分析环境空气中的多环芳烃时,气相色谱-三重四极杆串联质谱方法值得推广。 相似文献
11.
采用固相微萃取与气相色谱串联质谱联用,建立了快捷测定大气细颗粒物(PM2.5)中16种优控多环芳烃的方法.目标物先用二氯甲烷富集浓缩,然后用100 μm聚二甲基硅氧烷萃取纤维,通过超声萃取方式,在60℃条件下,萃取30 min.在优化的在多反应监测模式下,方法回收率在56.8% ~ 106.0%之间,检出限为0.022~0.056 ng/m3.应用此方法检测了清华大学采样点采取的2013年1月1到15日北京PM2.5空气样品中的16种PAHs,实验结果表明,PAHs总质量浓度在290~1812 ng/m3之间,其中四环PAHs的总质量浓度最大(145 ~937 ng/m3),其次是五环PAHs(总质量浓度81.1~664.5 ng/m3),分子质量浓度较高的依次是荧蒽、芘、苯并(b)荧蒽、(蕴)、苯并(a)芘、苯并(k)荧蒽、苯并(a)蒽和菲,PAHs的污染主要来源于化石燃料燃烧和机动车排放. 相似文献
12.
研究土壤中持久性有机污染物的含量可以为区域环境治理和来源解析提供基础数据。本文通过固相萃取结合气相色谱-串联质谱法建立了16种多环芳烃和15种多氯联苯的检测方法,并优化了固相萃取净化方法、色谱条件以及质谱碰撞能量。结果表明16种多环芳烃和15种多氯联苯的标准曲线线性关系良好,方法线性相关系数r~20.999,方法的检出限为0.1~2.5μg·kg~(-1),16种多环芳烃的平均加标回收率范围为62.5%~113.5%,相对标准偏差在2.3%~8.2%之间,15种多氯联苯的平均加标回收率范围为62.6%~91.4%,相对标准偏差在5.2%~7.8%之间。方法的准确度和精密度较高,通过对实际样品的测定,说明该方法具有较低的检出限及较强的抗干扰能力,能满足土壤中多环芳烃和多氯联苯的检测要求。 相似文献
13.
14.
15.
加速溶剂提取凝胶渗透色谱净化气相色谱质谱快速测定玉米中多环芳烃 总被引:10,自引:2,他引:10
研究了玉米中16种多环芳烃的快速分析方法.采用加速溶剂萃取法(ASE)对玉米样品进行提取,提取溶剂为二氯甲烷,萃取池中依次加入3 g中性氧化铝吸附剂和10 g待测样品,提取的同时能够在线净化除去小分子杂质.收集的提取液进一步用凝胶渗透色谱(GPC)除去样品中大分子油脂和色素,流动相为二氯甲烷,流速为3 mL/min,收集9~13 min的流出液,提取液浓缩定容至1 mL后用GC-SIM-MS进行分析.16种 PAHs以及4种替代物在2个浓度水平添加时的平均添加回收率在55.7%~145.3%之间; RSD为1 4%~16.8%;方法检出限为0.005~0.120 ng/g.本方法简便、快速、准确,净化效果较好,满足残留分析的要求,且能应用于其它谷物样品的日常分析. 相似文献
16.
用分散液液微萃取-气相色谱/质谱法测定水样中的16种多环芳烃(PAHs)。通过实验确定最佳萃取条件为:20μL四氯化碳作萃取剂,1.0 mL乙腈作分散剂,超声萃取1 min。在优化条件下,多环芳烃的富集倍数达到216~511,方法在0.05~50μg/L范围内呈良好的线性关系,相关系数(R2)在0.9873~0.9983之间,检出限为0.0020~0.14μg/L。相对标准偏差(RSD)在3.82%~12.45%(n=6)之间。该方法成功用于实际水样中痕量多环芳烃的测定。 相似文献
17.
大流量PUF采样-气相色谱质谱联用测定广州市大气中多环芳烃 总被引:1,自引:1,他引:1
采用PS-1型大流量聚氨酯泡沫(PUF)大气采样器,采集了2004年夏季5、6、7三个月广州市区和郊区两个采样点20个大气样品,用气相色谱-质谱联用仪测定了其中16种多环芳烃的含量。结果表明,广州夏季市区和郊区大气中16种多环芳烃(气相和颗粒相)(∑16-PAHs)浓度范围分别为49.33~329.37ng/m3和30.11~97.97ng/m3,市区与郊区∑16-PAHs平均浓度分别为144.25ng/m3和58.79ng/m3,市区明显要高于郊区;市区和郊区苯并[a]芘(BaP)平均浓度分别为1.17ng/m3和0.76ng/m3,均未超过国家空气质量标准。 相似文献
18.
采用液液萃取-气相色谱-质谱法测定墨水中的16种多环芳烃。样品经二氯甲烷液液萃取后,使用固相萃取技术进行纯化。在气相色谱分离中用DB-5MS色谱柱为固定相,在质谱分析中采用选择离子监测模式。16种多环芳烃在一定的质量浓度范围内与其峰面积呈线性关系,方法的检出限(3S/N)在5.0~30μg·kg-1之间。以空白样品为基体进行加标回收试验,所得回收率在60.6%~116%之间,测定值的相对标准偏差(n=6)在1.5%~5.3%之间。 相似文献