首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient nickel catalyst system for the carboxylation of organozinc reagents with CO(2) under very mild conditions has been developed. The catalyst system complements the conventional methods and enables the direct synthesis of various saturated carboxylic acid derivatives from the corresponding alkylzinc reagents and CO(2).  相似文献   

2.
A nickel-catalyzed reductive carboxylation of styrenes using CO2 has been developed. The reaction proceeds under mild conditions using diethylzinc as the reductant. Preliminary data suggests the mechanism involves two discrete nickel-mediated catalytic cycles, the first involving a catalyzed hydrozincation of the alkene followed by a second, slower nickel-catalyzed carboxylation of the in situ formed organozinc reagent. Importantly, the catalyst system is very robust and will fixate CO2 in good yield even if exposed to only an equimolar amount introduced into the headspace above the reaction.  相似文献   

3.
The mechanisms for the reaction of propylene glycol (PG) with CO2 catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) were theoretically investigated by density functional theory (DFT) method at the B3LYP/6-311++G(d,p) level. Through analyzing the optimized structures and energy profiles along the reaction paths, the PG-activated route was identified as the most probable reaction path, in which the rate-determining step was the nucleophilic attack of one of the O atoms in CO2 on the hydroxyl linked C atom in PG with energy barrier 56.96 kcal/mol. The catalytic role of TBD could be considered as a proton bridge activated by the synergistic action of its N atoms.  相似文献   

4.
5.
A family of well-defined (η(3)-allyl)Pd(L)(carboxylate) (L = PR(3) or NHC) complexes are by far the most efficient catalysts reported to date for the catalytic carboxylation of allylstannanes into allylcarboxylates using CO(2). The substrate scope of this reaction is extended to both substituted allylstannanes and allylboranes.  相似文献   

6.
A variety of arylboronic esters were efficiently carboxylated with CO(2) using a simple AgOAc/PPh(3) catalyst, affording the corresponding carboxylic acids in good yield. This simple and efficient silver(i) catalytic system showed wide functional group compatibility.  相似文献   

7.
When the esters of arylboronic acids with 2,2-dimethylpropan-1,3-diol were treated with a catalytic amount of [Rh(OH)(cod)]2 in the presence of 1,3-bis(diphenylphosphino)propane and CsF in dioxane at 60 degrees C under carbon dioxide atmosphere, the benzoic acid derivatives were obtained in good yields. Reactions of alkenylboronic esters also proceeded under similar conditions to give alpha,beta-unsaturated carboxylic acids. As these boronic esters are now easily available through coupling or direct borylation reactions, this method would be a useful method for the preparation of various functionalized aryl- and alkenyl-carboxylic acids.  相似文献   

8.
Mita T  Michigami K  Sato Y 《Organic letters》2012,14(13):3462-3465
One of the most challenging transformations in current organic chemistry is the catalytic carboxylation of a C(sp(3))-H bond using CO(2) gas, an inexpensive and ubiquitous C1 source. A sequential protocol for C(sp(3))-H carboxylation by employing a nitrogen-directed, metal-assisted, C-H activation/catalytic silylation reaction in conjunction with fluoride-mediated carboxylation with CO(2) was established. The carboxylation proceeded only at the benzylic C(sp(3))-Si bond, not at the aromatic C(sp(2))-Si, which is advantageous for further manipulations of the products.  相似文献   

9.
Zhang X  Zhang WZ  Ren X  Zhang LL  Lu XB 《Organic letters》2011,13(9):2402-2405
A convenient approach to selectively prepare a wide range of functionalized propiolic acids was developed by AgI-catalyzed carboxylation of terminal alkynes using carbon dioxide as carboxylative agent under ligand-free conditions.  相似文献   

10.
《中国化学快报》2022,33(12):5023-5029
Photoreduction of CO2 into value-added products offers a promising approach to overcome both climate change and energy crisis. However, low conversion efficiency, poor product selectivity, and unclear mechanism limit the further advancement of CO2 photoreduction. The development of two-dimensional (2D) materials and construction of single atom sites are two frontier research fields in catalysis. Combining the advantages of 2D materials and single atom sites is expected to make a breakthrough in CO2 photoreduction. In this review, we summarized the design and application, proposed challenges and opportunities, and laid a foundation for further research and application of 2D materials confining single atoms (SACs@2D) for CO2 photoreduction.  相似文献   

11.
The self-assembly of discrete molecular entities into functional nanomaterials has become a major research area in the past decades. The library of investigated compounds has diversified significantly, while the field as a whole has matured. The incorporation of metal ions in the molecular design of the (supra-)molecular building blocks greatly expands the potential applications, while also offering a promising approach to control molecular recognition and attractive and/or repulsive intermolecular binding events. Hence, supramolecular polymerization of metal-containing monomers has emerged as a major research focus in the field. In this perspective article, we highlight recent significant advances in supramolecular polymerization of metal-containing monomers and discuss their implications for future research. Additionally, we also outline some major challenges that metallosupramolecular chemists (will) have to face to produce metallosupramolecular polymers (MSPs) with advanced applications and functionalities.

In this perspective article, we highlight recent significant advances in the self-assembly of metal-containing monomers and discuss their implications for future research.  相似文献   

12.
Currently,the increasing demands for portable,implantable,and wearable electronics have triggered the interest in miniaturized energy storage devices.Different from conventional energy storage devices,interdigital microbatteries(IMBs) are free of separators and prepared on a single substrate,potentially achieving a short ionic diffusion path and better performance.Meanwhile,they can be easily fabricated and integrated into on-chip miniaturized electronics,holding the promise to provide long-last...  相似文献   

13.
The catalytic roles of ionic liquids (ILs) in the syntheses of 1,3-disubstituted ureas from the carboxylation of amines by CO(2) were experimentally and theoretically investigated. The carboxylation reaction of n-butylamine was greatly facilitated by the presence of an IL and the catalytic activity of the IL was strongly affected by the nucleophilicity of the anion. Computational study on the mechanistic aspects of the carboxylation with methylamine with or without the presence of an IL, 1-ethyl-3-methylimidazolium chloride, implies that the activation energies of the transition states and the intermediate ionic species could be lowered significantly through the multi-interactions of the carbonyl group of CO(2) with both cations and anions of the ILs.  相似文献   

14.
CO2作为主要的温室气体, CO2固定利用引起了广泛的关注,同时它还是一种丰富无毒的 C1资源,将其作为原料合成高附加值的化学品,不仅可以缓解温室效应,而且还可以缓解能源危机,具有重要的经济和战略意义.在 CO2的资源化利用中,制备2-苯基丙酸意义重大.2-苯基丙酸是一种重要的医药中间体,可用于合成布洛芬、酮洛芬等用途广泛的药剂.因此,其制备方法引起了人们的广泛关注.
  在典型的合成2-苯基丙酸均相催化体系中,经常使用Co, Ni和Pd等过渡金属催化剂,虽然得到的目标产物产率较高,但催化剂成本高,且很难循环使用,从而限制了其实际使用.
  电催化法为2-苯基丙酸的合成提供了一条新的途径.本课题组利用手性钴配合物作为催化剂电羧化不对称合成了手性2-苯基丙酸,其产率和 ee值分别为37%和83%.此外,我们还制备了 Co负载的纳米 Ag电极,以其为工作电极不对称羧化1-溴乙基苯与 CO2反应,得到目标产物2-苯基丙酸的产率为58%, ee值为73%.
  在前期工作的基础上,本文利用无负载的纳米银电极(Ag NPs)为工作电极,电催化1-溴乙基苯与 CO2羧化制备2-苯基丙酸.银纳米电极是利用水合肼还原 AgNO3溶液经抽滤、干燥、压片而成.为了研究 Ag NPs催化 CO2与1-溴乙基苯反应,在一室型电解池中,以 Ag NPs为阴极,镁电极为牺牲阳极,以 CH3CN-TEAI (0.1 mol/L)溶液为电解质溶液,底物浓度为0.1 mol/L,饱和 CO2的氛围下进行恒电流电解,经后处理,可得目标产物2-苯基丙酸.为了提高2-苯基丙酸的产率,我们探讨了工作电极、电解电量、电流密度以及反应温度等条件对反应的影响,从而得到优化条件为反应温度0℃、电解电量2.5 F/mol、电流密度5 mA/cm2,此时2-苯基丙酸的产率可达98%.
  在优化条件下,我们还研究了一系列苯基卤代物,如溴化苄、溴苯、α-溴苯乙酸、2-溴代萘、二苯基溴甲烷和1-氯乙基苯的电羧化反应.反应后可以得到相应的羧酸,并取得较好的收率(67%?88%).结果表明,纳米银电极对催化该类反应具有很好催化活性和普适性.本文所采用的条件都比较温和,无需高温或高压.
  在最优条件下,所制纳米银电极可重复使用至少10次,且保持催化活性不变.经过 X射线衍射和扫描电镜表征发现,重复使用后纳米银电极的组成和微结构都保持不变.因此,该纳米银电极具有制备方法简单、催化活性高,稳定性好等特点,具备一定的应用前景.  相似文献   

15.
林坚  王晓东  张涛 《催化学报》2016,(11):1805-1813
CO氧化可能是多相催化领域最常见的反应,它不仅能作为探针反应研究催化剂结构、反应活性位等,而且在诸多实际过程如空气净化、汽车尾气污染物控制、燃料电池所用氢源净化等扮演重要角色.最早的 CO氧化催化剂为霍加拉特剂,其组分主要为 CuO与 MnO2混合氧化物,然而在实际应用过程中存在低温活性低、吸湿易失活等缺点.1987年, Haruta等发现湿化学法制备的氧化物负载 Au催化剂表现出非常高的低温 CO氧化活性及耐水稳定性,其 Au粒子以纳米尺度分散,进而引发了催化研究领域的“淘金热”及纳米催化研究热潮.而 CO氧化通常作为考察 Au催化剂结构性质的探针反应,也成为考核其它金属催化剂是否具有高活性的判据之一. Pt族金属上 CO氧化反应从 Langmuir等研究开始至今已有100多年,然而低温下该金属催化剂活性与 Au催化剂相比要低一个数量级.本质原因为 Pt族金属上 CO吸附较强, O2吸附与活化受到抑制,而该步骤被认为是 CO氧化的速控步,因而表现出较低的催化活性.通常 Pt族金属催化剂需要100oC以上 CO才能脱附, O2进而得以吸附.目前研究人员采取多种策略,其基本原则为削弱 Pt族金属上 CO吸附强度或者提供其它活性位供 O2吸附与活化.本综述将概括近十年来Pt族金属催化剂 CO氧化研究进展,主要总结室温甚至超低温条件下的研究成果.高活性 CO氧化催化剂主要是通过采用可还原氧化物为载体或助剂,或者改变催化剂表面性质如使表面富 OH基物种来形成. Au催化剂的研究发现,改变金属粒子尺寸极有可能获得不同寻常的催化性能,而常规的 Pt族金属催化剂研究主要是在纳米尺度.近期人们发现逐渐减小 Pt族金属粒子尺寸,从纳米到亚纳米甚至单原子时,其电荷状态逐渐呈正价形式,这有利于削弱其 CO吸附强度.此外,可通过增强金属载体间的相互作用,改变金属载体接触方式,如从核壳到交叉结联结构,构筑出更多的金属载体界面,使得 O2更容易吸附与活化或稳定更多的 OH基物种进而在此界面与吸附的 CO反应.伴随着表征技术的发展, CO氧化机理的认识也更加深入,这给催化剂的设计带来更多新的思路.(1)改变 CO吸附活化位,将 CO吸附活化位从金属转移到载体上,从而大大降低 CO吸附强度,活化的 CO物种在反应过程中容易溢流到金属载体界面处,这甚至有利于超低温度下(–100oC左右) CO氧化.(2)改变 O2活化形式. O2通常在 Pt族金属上容易以解离氧原子形式存在,通过改变载体、金属载体界面性质使得 O2以分子氧形式活化,如形成超氧或过氧物种,这有利于降低 CO氧化的活化能垒,进而提高其低温甚至超低温下 CO氧化活性.今后,设计并合成出在超低温度下能够氧化 CO的 Pt族金属催化剂将成为 CO氧化催化剂研究的重要方向之一.  相似文献   

16.
Lu Wang  Wei Sun  Chao Liu 《中国化学》2018,36(4):353-362
Carbon dioxide is a sufficient and important carbon resource, which has been widely used as a C1 building block in synthetic chemistry. Carbonylations with CO are important processes in industry. However, due to the toxicity of CO, its storage and transport are problematic. Attentions are gradually focused on using other safe reagents to be the CO surrogates in carbonylation reactions. This review focuses on the summary of recent developments in using CO2 as a CO surrogate in homogeneous catalysis. Reductive processes by using H2, Si‐H, alcohols, etc and redox‐neutral processes are separately summarized.  相似文献   

17.
Saturated hydrocarbons react with carbon monoxide in the presence of magnesium powder and potassium peroxodisulfate in trifluoroacetic acid (TFA) to afford the corresponding carboxylic acids as major products and alkyl trifluoroacetates as minor products in high yields. The use of equimolar amounts of magnesium (5 mmol) and K2S2O8(5 mmol) is best for this reaction. Cyclohexane is carboxylated most effectively at 80 °C for 30 h using 50 atm CO, 3 ml of TFA and 1 mmol of cyclohexane, giving 80% conversion (95% conversion yield) based on cyclohexane. The reactivity of various saturated hydrocarbons has been determined by competitive reactions of equimolar amounts of cyclohexane (5 mmol) and another hydrocarbon (5 mmol). The order of decreasing reactivity obtained is cycloheptane > cyclohexane > cyclopentane > n‐propane > methane. Copyright ­© 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Rh-catalyzed direct carboxylation of unactivated aryl C-H bond under atmospheric pressure of carbon dioxide was realized via chelation-assisted C-H activation for the first time. Variously substituted and functionalized 2-arylpyridines and 1-arylpyrazoles underwent the carboxylation in the presence of the rhodium catalyst and a stoichiometric methylating reagent, AlMe(2)(OMe), to give carboxylated products in good yields. The catalysis is proposed to consist of methylrhodium(I) species as the key intermediate, which undergoes C-H activation to afford rhodium(III), followed by reductive elimination of methane to give nucleophilic arylrhodium(I). This approach demonstrates promising application of C-H bond activation strategy in the field of carbon dioxide fixation.  相似文献   

19.
To alleviate the global warming by removing excess CO2 and converting them into value-added chemicals,(photo)electrochemical reduction has been recognized as a ...  相似文献   

20.
周睿  韩娜  李彦光 《电化学》2019,25(4):445-454
二氧化碳(CO2)作为一种经济、安全、可再生的碳资源化合物,其高效回收利用一直是全社会关注的焦点. 利用电化学方法,将CO2还原转化生成一系列高附加值的化学品或燃料,对于缓解能源与环境双重压力具有重要的现实意义. 本论文介绍了电化学CO2还原反应的基本原理与过程,综述了近年来铋基催化材料的发展现状,重点对这类催化材料的制备合成、结构调控、催化反应机理研究等方面进行了总结,最后对其未来发展方向进行了探讨与展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号