首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical capacitors (ECs) are a promising technology for energy storage, and future development of sustainable electrode materials is critical to developing these devices. The recent progress and earnest motivation to develop high specific energy capacitors commercially for the emerging market and electronics industry, coupled with the significance and popularity of graphene foam (GF)–based electrode materials in the preparation of functional capacitors have been crucially explored in this review. The review outlines the current disposition and headways in GF-based ECs' technology. Besides, owing to its three-dimensional interconnected hierarchical form alongside the physicochemical distinctions, GF has been regarded as one to curtail some bottlenecks regarding graphene dispersion/restacking in nanocomposite materials. Some of the various techniques to synthesizing high-grade GF that can enable higher energy density of ECs, as well as some key material's features of GF that enhance various performances of the material's composite have also been reviewed.  相似文献   

2.
A novel electrochemical sensor for para-nitrophenol (p-NP) was constructed with graphene–Au composite containing 10 % Au (G–Au 10 %). In the composite, Au nanoparticles with the size of ca. 11 nm were regularly scattered on graphene sheet without aggregation, which offers dramatically higher electrocatalytic activity on the redox of K3[Fe(CN)6]/K4[Fe(CN)6] couple than sole Au nanoparticles. Compared to sole Au nanoparticles, the G–Au 10 % also exhibited dramatically improved electrocatalytic activity on the reduction of p-NP. Amperometric detection of p-NP at G–Au 10 % modified electrode displayed a wide linear range of 0.47–10.75 mM with detection limit of 0.47 μM and a high sensitivity of 52.85 μA/mM. Considering the thrifty in utilization of noble Au, the G–Au 10 % can be successfully applied as a low-cost and powerful sensing material for trace detection of p-NP.  相似文献   

3.
4.
Electrochemical biosensors are highly compatible with modern advancements in magnetic nanomaterials. In particular, the versatile nature of magnetic nanomaterials as a universal platform for selective isolation of diverse forms of cancer biomarkers in body circulation, is highly synergistic with electrochemical biosensors for elevating biosensing performance to unprecedented levels. Such diverse circulating target biomolecules include cell surface proteins of circulating tumor cells and extracellular vesicles (EVs), as well as circulating tumor nucleic acids (i.e. ctDNA/ctRNA). This focussed review serves to discuss the latest work in the fields of magnetic nanomaterials and electrochemistry to tackle existing analysis challenges of diverse circulating biomarkers in cancer.  相似文献   

5.
The rapid and simple detection of bisphenol A is very important for the safety and reproduction of organisms. Here, a sensitive and reliable electrochemical sensor was established for bisphenol A detection based on the high amplification effect of copper sulfide-multi-walled carbon nanotube (CuS–MWCNT) nanocomposites. The flower-like CuS–MWCNT were successfully synthesized by a simple hydrothermal method accompanied by polyvinylpyrrolidone (PVP). Compared with bare glassy carbon electrode (GCE), CuS–MWCNT modified GCE could amplify the electrochemical signals in about ten times, which was attributed to the synergistic effect of CuS and MWCNT. The MWCNT could increase the specific surface area of electrodes and improve the electrode activity. The integration of CuS could further enhance the electrode conductivity as well as accelerate the electron transfer rate. Raman spectra and transmission electron microscope (TEM) were used to characterize the successful fabrication of CuS–MWCNT nanocomposites and its uniform and monodispersed morphology. Under optimizing conditions, the oxidation currents of bisphenol A via the differential pulse voltammetric (DPV) showed a good linear relationship with its concentration in a wide range of 0.5–100 μM, with a detection limit of 50 nM. This electrochemical sensor of bisphenol A provided a convenient and economical platform with high sensitivity and reproducibility, which had great potential in environmental monitoring.  相似文献   

6.
The combination of stable biorecognition elements and robust quantum dots (QDs) has the potential to yield highly effective reporters for bioanalyses. Llama-derived single domain antibodies (sdAb) provide small thermostable recognition elements that can be easily manipulated using standard DNA methods. The sdAb was self-assembled on dihydrolipoic acid (DHLA) ligand-capped CdSe–ZnS core–shell QDs made in our laboratory through the polyhistidine tail of the protein, which coordinated to zinc ions on the QD surface. The sdAb–QD bioconjugates were then applied in both fluorometric and surface plasmon resonance (SPR) immunoassays for the detection of ricin, a potential biothreat agent. The sdAb–QD conjugates functioned in fluoroimmunoassays for the detection of ricin, providing equivalent limits of detection when compared to the same anti-ricin sdAb labeled with a conventional fluorophore. In addition, the DHLA-QD–sdAb conjugates were very effective reporter elements in SPR sandwich assays, providing more sensitive detection with a signal enhancement of ∼10-fold over sdAb reporters and 2–4 fold over full sized antibody reporters. Commercially prepared streptavidin-modified polymer-coated QDs also amplified the SPR signal for the detection of ricin when applied to locations where biotinylated anti-ricin sdAb was bound to target; however, we observed a 4-fold greater amplification when using the DHLA-QD–sdAb conjugates in this format.  相似文献   

7.

Sepsis causes life-threatening complications with the highest burden of death and medical expenses in hospitals worldwide. Despite the progression of targeted therapies for sepsis, the challenge of early diagnosis of sepsis-related biomarkers remains. The analysis of the TNF-α and sTREM-1 in biological fluids provides essential information for effective treatments. In this work, we report developing an electrochemical immunosensor for the rapid detection of TNF-α and sTREM-1 proteins in human plasma samples. First, using the electrospinning process, cerium oxide nanofibers were synthesized. Subsequently, the antibodies corresponding to the targeted proteins are immobilized onto the surface-functionalized working electrodes using NHS/EDC chemistry. The proposed immunosensor’s performance in a biological fluid was assessed using an analytical electrochemistry approach. The limit of detection for the electrochemical immunosensors was 0.51 and 0.41 pg/mL for TNF-α and sTREM-1, respectively, with high selectivity and sensitivity for the use as a point of care device.

  相似文献   

8.
In this paper, a simple, selective and reusable electrochemical biosensor for the sensitive detection of mercury ions (Hg2+) has been developed based on thymine (T)-rich stem–loop (hairpin) DNA probe and a dual-signaling electrochemical ratiometric strategy. The assay strategy includes both “signal-on” and “signal-off” elements. The thiolated methylene blue (MB)-modified T-rich hairpin DNA capture probe (MB-P) firstly self-assembled on the gold electrode surface via Au–S bond. In the presence of Hg2+, the ferrocene (Fc)-labeled T-rich DNA probe (Fc-P) hybridized with MB-P via the Hg2+-mediated coordination of T–Hg2+–T base pairs. As a result, the hairpin MB-P was opened, the MB tags were away from the gold electrode surface and the Fc tags closed to the gold electrode surface. These conformation changes led to the decrease of the oxidation peak current of MB (IMB), accompanied with the increase of that of Fc (IFc). The logarithmic value of IFc/IMB is linear with the logarithm of Hg2+ concentration in the range from 0.5 nM to 5000 nM, and the detection limit of 0.08 nM is much lower than 10 nM (the US Environmental Protection Agency (EPA) limit of Hg2+ in drinking water). What is more, the developed DNA-based electrochemical biosensor could be regenerated by adding cysteine and Mg2+. This strategy provides a simple and rapid approach for the detection of Hg2+, and has promising application in the detection of Hg2+ in real environmental samples.  相似文献   

9.
High pesticide use, especially in agriculture, can lead to environmental pollution and potentially adverse health effects. As result, pesticide residues end up in different media, including water and food products, which may serve as direct routes for human exposure. There is thus a continuous drive to develop analytical methods for screening and quantification of these compounds in the different environmental media in which they may occur. Development of quantum dot (QD) based sensors for monitoring pesticides has gained momentum in recent years. QD materials have excellent and unique optical properties and have high fluorescence quantum yields compared to other fluorophores. They have thus been used in numerous studies for the development of probes for organic pollutants. In this paper we specifically review their application as fluorescence probes for pesticide detection in different media including water and in fruits and vegetables. The low detection limits reported demonstrate the potential use of these methods as alternatives to expensive and time-consuming conventional techniques. We also highlight potential limitations that these probes may present when it comes to routine application. Finally we discuss possible future improvements to enhance the selectivity and robustness of these sensors. We note that there is still a need for researchers to develop standardized QD based sensors which could lead to their commercialization and routine application.  相似文献   

10.
We proposed an electrochemical DNA sensor by using peroxidase-like magnetic ZnFe2O4–graphene quantum dots (ZnFe2O4/GQDs) nanohybrid as a mimic enzymatic label. Aminated graphene and Pd nanowires were successively modified on glassy carbon electrode, which improved the electronic transfer rate as well as increased the amount of immobilized capture ssDNA (S1). The nanohybrid ZnFe2O4/GQDs was prepared by assembling the GQDs on the surface of ZnFe2O4 through a photo-Fenton reaction, which was not only used as a mimic enzyme but also as a carrier to label complementary ssDNA (S3). By synergistically integrating highly catalytically activity of nano-sized GQDs and ZnFe2O4, the nanohybrid possessed highly-efficient peroxidase-like catalytic activity which could produce a large current toward the reduction of H2O2 for signal amplification. Thionine was used as an excellent electron mediator. Compared with traditional enzyme labels, the mimic enzyme ZnFe2O4/GQDs exhibited many advantages such as environment friendly and better stability. Under the optimal conditions, the approach provided a wide linear range from 10−16 to 5 × 10−9 M and low detection limit of 6.2 × 10−17 M. The remarkable high catalytic capability could allow the nanohybrid to replace conventional peroxidase-based assay systems. The new, robust and convenient assay systems can be widely utilized for the identification of other target molecules.  相似文献   

11.
This communication reports on a new electrochemical method to detect the hybridization specificity by using host–guest recognition technique. A hairpin DNA with dabcyl-labeled at its 3′ and NH2 group at 5′ terminal was combined with CdS nanoparticle to construct a double-labeled probe (DLP), which could selectively hybridize with its target DNA in homogeneous solution. A β-CD modified Poly(N-acetylaniline) glassy carbon electrode was used for capturing the dabcyl label in DLP. When without binding with target DNA, the DLP kept its stem-loop structure which shielded the dabcyl molecule due to the loop of the hairpin DNA and CdS nanoparticle blocking dabcyl enter into the cavity of these β-CD molecules on the electrode. However, in present of complementary sequence, the target-binding DLP was incorporated into double stranded DNA, causing the DLP’s loop-stem structure opened and then the dabcyl was easily captured by the β-CD modified electrode. During electrochemical measurement, the signal from the dissolved Cd2+ was used for target DNA quantitative analysis.  相似文献   

12.
Graphene quantum dots (GQDs) were prepared by pyrolysis of citric acid, and then incorporated into β-cyclodextrin (β-CD) via H-bonds between the oxygen-containing groups on GQDs and the hydroxyl groups on β-CD. The nanocomposites of GQDs and β-CD (GQDs/β-CD) were negatively charged due to the ionization of carboxyl groups of GQDs, and therefore they could be effectively electrodeposited onto a glassy carbon electrode (GCE). The electrodeposited GQDs/β-CD were optically active due to the introduction of β-CDs with well-defined hydrophobic central cavities, and it was employed as an electrochemical chiral interface for enantiorecognition of tryptophan (Trp) isomers.  相似文献   

13.
Journal of Solid State Electrochemistry - Insulin hormone is of great importance for many diseases, especially for diabetes management. Therefore, different detection strategies have been used for...  相似文献   

14.
Herein, we have highlighted the latest developments on biosensors for cancer cell detection. Electrochemical (EC) biosensors offer several advantages such as high sensitivity, selectivity, rapid analysis, portability, low-cost, etc. Generally, biosensors could be classified into other basic categories such as immunosensors, aptasensors, cytosensors, electrochemiluminescence (ECL), and photo-electrochemical (PEC) sensors. The significance of the EC biosensors is that they could detect several biomolecules in human body including cholesterol, glucose, lactate, uric acid, DNA, blood ketones, hemoglobin, and others. Recently, various EC biosensors have been developed by using electrocatalytic materials such as silver sulfide (Ag2S), black phosphene (BPene), hexagonal carbon nitrogen tube (HCNT), carbon dots (CDs)/cobalt oxy-hydroxide (CoOOH), cuprous oxide (Cu2O), polymer dots (PDs), manganese oxide (MnO2), graphene derivatives, and gold nanoparticles (Au-NPs). In some cases, these newly developed biosensors could be able to detect cancer cells with a limit of detection (LOD) of 1 cell/mL. In addition, many remaining challenges have to be addressed and validated by testing more real samples and confirm that these EC biosensors are more accurate and reliable to measure cancer cells in the blood and salivary samples.  相似文献   

15.
An electrochemical chiral sensing platform based on amino-functionalized graphene quantum dots/β-cyclodextrin modified glassy carbon electrode (NH2-GQDs/β-CD/GCE) was developed for enantioselective detection of tryptophan (Trp) isomers. NH2-GQDs/β-CD/GCE showed high electrocatalytic activity and good analytical behavior toward the oxidation of Trp isomers. The oxidation peak potentials and oxidation peak currents of Trp isomers at NH2-GQDs/β-CD/GCE surface were observed by differential pulse voltammetry. NH2-GQDs/β-CD nanocomposite exhibited different binding ability for two Trp isomers and selectively bonded with d-Trp, resulting in the higher oxidation peak current of d-Trp at NH2-GQDs/β-CD/GCE surface. Trp isomers exhibited different oxidation peak potentials at NH2-GQDs/β-CD/GCE surface, and the peak potential separation between l-Trp and d-Trp was around 0.022 V, which was used for the enantioselective detection of Trp isomers. Under the optimum experimental conditions, the oxidation peak currents were linearly dependent on the concentrations of Trp isomers. The linear ranges of l-Trp and d-Trp were all from 1.0 to 30.0 μM with correlation coefficients of 0.9886 and 0.9800, respectively. The detection limits of l-Trp and d-Trp were 0.65 and 0.12 μM (3σ/K), respectively. Such NH2-GQDs/β-CD/GCE displayed high anti-interference against some physiological substances, good reproducibility and excellent long-term stability toward Trp isomers detection in biomedical applications.  相似文献   

16.
Exosomal miRNAs, as potential biomarkers in liquid biopsy for cancer early diagnosis, have aroused widespread concern. Herein, an electrochemical biosensor based on DNA “nano-bridge” was designed and applied to detect exosomal microRNA-21 (miR-21) derived from breast cancer cells. In brief, the target miR-21 can specifically open the hairpin probe 1(HP1) labeled on the gold electrode (GE) surface through strand displacement reaction. Thus the exposed loop region of HP1 can act as an initiator sequence to activate the hybridization chain reaction (HCR) between two kinetically trapped hairpin probes: HP2 immobilized on the GE surface and biotin labeled HP3 in solution. Cascade HCR leads to the formation of DNA “nano-bridge” tethered to the GE surface with a great deal of “piers”. Upon addition of avidin-modified horseradish peroxidase (HRP), numerous HRP were bound to the formed “nano-bridge” through biotin-avidin interaction to arouse tremendous current signal. In theory, only a single miR-21 is able to trigger the continuous HCR between HP2 and HP3 until all of the HP2 are exhausted. Therefore the proposed biosensor achieved ultrahigh sensitivity toward miR-21 with the detection limit down to 168 amol/L, as well as little cross-hybridization even at the single-base-mismatched level. Successful attempts were also made in the detection of exosomal miR-21 obtained from the MCF-7 of breast cancer cell line. To our knowledge, this is the first attempt to built horizontal DNA nano-structure on the electrode surface for exosomal miRNAs detection. In a word, the high sensitivity, selectivity, low cost make the proposed method hold great potential application for early point-of-care (POC) diagnostics of cancer.  相似文献   

17.
The detection of cancer biomarkers is of great significance for the early screening of cancer. Detecting the content of sarcosine in blood or urine has been considered to provide a basis for the diagnosis of prostate cancer. However, it still lacks simple, high-precision and wide-ranging sarcosine detection methods. In this work, a Ti3C2TX/Pt–Pd nanocomposite with high stability and excellent electrochemical performance has been synthesized by a facile one-step alcohol reduction and then used on a glassy carbon electrode (GCE) with sarcosine oxidase (SOx) to form a sarcosine biosensor (GCE/Ti3C2TX/Pt–Pd/SOx). The prominent electrocatalytic activity and biocompatibility of Ti3C2TX/Pt–Pd enable the SOx to be highly active and sensitive to sarcosine. Under the optimized conditions, the prepared biosensor has a wide linear detection range to sarcosine from 1 to 1000 µM with a low limit of detection of 0.16 µM (S/N = 3) and a sensitivity of 84.1 µA/mM cm2. Besides, the reliable response in serum samples shows its potential in the early diagnosis of prostate cancer. More importantly, the successful construction and application of the amperometric biosensor based on Ti3C2TX/Pt–Pd will provide a meaningful reference for detecting other cancer biomarkers.  相似文献   

18.
In this work, a new, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. This strategy includes three steps: (1) the target DNA initiates RCA reaction and generates linear RCA products; (2) the complementary DNA hybridizes with the RCA products to form long double-strand DNA (dsDNA); (3) [Ru(phen)2(dppx)]2+ (dppx = 7,8-dimethyldipyrido [3,2-a:2′,3′-c] phenanthroline) intercalates into the long dsDNA with strong fluorescence emission. Due to its strong binding propensity with the long dsDNA, [Ru(phen)2(dppx)]2+ is removed from the surface of the QDs, resulting in restoring the fluorescence of the QDs, which has been quenched by [Ru(phen)2(dppx)]2+ through a photoinduced electron transfer process and is overlaid with the fluorescence of dsDNA bonded Ru(II) polypyridyl complex (Ru-dsDNA). Thus, high fluorescence intensity is observed, and is related to the concentration of target. This sensor exhibits not only high sensitivity for hepatitis B virus (HBV) ssDNA with a low detection limit (0.5 pM), but also excellent selectivity in the complex matrix. Moreover, this strategy applies QDs–Ru assembling dyads to the detection of single-strand DNA (ssDNA) without any functionalization and separation techniques.  相似文献   

19.
Breast cancer is one of the most critical threats to the health of women, and the development of new methods for early diagnosis is urgently required, so this paper reports a method to detect Michigan cancer foundation-7 (MCF-7) human breast cancer cells with considerable sensitivity and selectivity by using electrochemical technique. In this method, a mucin 1 (MUC1)-binding aptamer is adopted to recognize MCF-7 human breast cancer cells, while enzyme labeling is employed to produce amplified catalytic signals. The molecular recognition and the signal amplification are elaborately integrated by fabricating an aptamer–cell–aptamer sandwich architecture on an electrode surface, thus a biosensor for the detection of MCF-7 is fabricated based on the architecture. The detection range can be from 100 to 1 × 107 cells, and the detection limit can be as low as 100 cells. The method is also cost-effective and conveniently operated, implying potential help for the development of early diagnosis of breast cancer.  相似文献   

20.
Journal of Solid State Electrochemistry - In the case of sensitized solar cells, liquid electrolyte materials are the fundamental components due to its advantage of superior conductivity. However,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号