首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cement industry is one which most emits polluting gases to the environment, due to the calcium carbonate calcination, as well as to the burning of fossil fuels during the manufacturing process. Metakaolin (MK), in partial substitution to cement in its applications, is having a special worldwide growing role, for the technological increment due to its pozzolanic activity and mainly to the reduction of those emissions. In the present paper, the effect of pozzolanic activity of metakaolin was analyzed by thermal analysis in pastes and mortars of type II Portland cement in the first three days of the hydration, during which, relevant initial stages of the hydration process occur. By non-conventional differential thermal analysis (NCDTA), paste and mortar samples containing 0, 10, 20, 30 and 40% of metakaolin in cement mass substitution and using a 0.5 water/(total solids) mass ratio, were evaluated. The NCDTA curves, after normalization on cement mass basis and considering the heat capacity of each reactant, indicate that the pozzolanic activity behavior of metakaolin is different in pastes and mortars. Through the deconvolution of the normalized NCDTA curve peaks, it can be seen that ettringuite formation increases as cement substitution degree (CSD) increases, in both cases. Tobermorite formation is more enhanced in mortars than in pastes by MK, with a maximum formation at 30% of CSD. In the pastes, tobermorite formation increases as CSD increases but it is practically the same at 30 and 40% of CSD.  相似文献   

2.
Journal of Thermal Analysis and Calorimetry - The effect of fired drinking water sludge (FDWS) as a mineral admixture on the physico-mechanical properties and the fire resistance of pozzolanic...  相似文献   

3.
Poly(propylene fumarate) (PPF) oligomers were synthesized by step polymerization using bis(2-hydroxypropyl fumarate) or propylene bis(hydrogen maleate) as starting materials. Oligomers possessing identical degrees of polymerization (DP), but varying in their end group character (either hydroxyl or carboxyl) were first prepared and characterized, then used as part of a bone cement preparation consisting of oligomer, tricalcium phosphate, calcium carbonate, and methyl methacrylate. Compressive strength of the resulting composite appeared to be dependent on both the degree of polymerization of the PPF, and the nature of the oligomers' end groups.  相似文献   

4.
Journal of Thermal Analysis and Calorimetry - The article analyses the peculiarities of the combined effect on hydration process of the following pozzolanic additives: metakaolin waste (MW),...  相似文献   

5.
The main objective of the present study was to investigate the synergistic effect of simultaneous use of two reinforcing fillers in rubber compounds based on acrylonitrile-butadiene copolymer (NBR). Silica was used as reinforcing filler in all samples and the loading content was 25 phr. 3 and 5 phr of multiwall carbon nanotubes (MWCNT) were used as second reinforcing filler in NBR/silica compounds. Melt mixing method was employed for compound preparation. The effects of carbon nanotube/silica hybrid filler on mechanical and vulcanization characteristics of the rubber compounds were investigated. These results revealed that addition of the reinforcing filler, either carbon nanotube or silica, shortened the optimum cure time (t90) and also scorch time (ts1) of samples compared to that of pure NBR compound. In hybrid compounds, the reduction in optimum cure time and scorch time was higher than that of for silica-filled NBR or CNT-filled NBR compounds. This can be attributed to the synergistic effect between CNT and silica as two reinforcing agents in NBR compounds. Regardless the composition of the reinforcing filler, an increase of the relaxed storage modulus is observed, while the tan δ value is decreased steadily. The dynamic modulus reinforcement of nanocomposites was examined by the Guth Gold and Modified Guth Gold equations. For hybrid samples, the experimental values show a significant positive deviation from model predictions. According to the Barlow’s formula, hybrid compounds show higher burst strength compared to silica or CNT filled NBR compounds.  相似文献   

6.
Journal of Solid State Electrochemistry - Polypyrrole(PPy)/BiOCl hybrid composites were synthesized for the first time via one-step chemical oxidation process by addition of Bi2O3 nanoparticle in...  相似文献   

7.
Cyclomaltohexaose (alpha-cyclodextrin, alpha-CD) can form inclusion complexes (ICs) with polymer molecules in the columnar crystal structure in which alpha-CD molecules stack to form a molecular tube. Complementary water vapor sorption and wide-angle X-ray diffractomery (WAXD) were performed on oligomer/alpha-CD ICs to determine their structures and stabilities. To discern the effect of guest molecule hydrophobicity on water adsorption isotherms, polyethylene glycol (PEG, MW = 600 g/mol) and hexatriacontane (HTC) guests were used. Sorption isotherms for PEG/alpha-CD IC are similar to those obtained for pure alpha-CD and PEG, suggesting the presence of dethreaded PEG in the sample. WAXD collected before and after water vapor sorption of PEG/alpha-CD IC indicated a partial conversion from columnar to cage crystal structure, the thermodynamically preferred structure for pure alpha-CD, due to dethreading of PEG. This behavior does not occur for HTC/alpha-CD IC. Sorption isotherms collected at 20, 30, 40, and 50 degrees C allowed the calculation of the isosteric heats of adsorption and the integral entropies of adsorbed water which are characterized by minima that indicate the monolayer concentration of water in the ICs.  相似文献   

8.
In this work, polyimide/silica hybrid composites were prepared by the sol-gel reaction of tetraethoxysilane(TEOS) and the thermal imidization of poly(amic acid) from 3,3′,4,4′-biphenyltetracarboxylic dianhydride(BPDA) and 4,4′-oxydianiline(ODA), and their photophysical properties were investigated using a fluorescence spectroscopy. It was found that the intrinsic fluorescence of poly(4,4′-oxydiphenylene-3,3′4,4′-biphenyltetracarboximide)(BPDA-ODA) such as emission intensity and emission wavelength depends strongly on the changes in the molecular conformations during the sol-gel reaction and the thermal imidization. In conclusion, we found that the fluorescence spectroscopy can provide an insight into how the intermolecular or intramolecular interaction of polyimide in the hybrid composite system is affected by the silica contents, depending on the sample states.  相似文献   

9.
The effect of nano-metakaolin (NMK) addition on hydration characteristics of fly ash (FA) blended cement mortar was experimentally investigated. The amorphous or glassy silica, which is the major component of a pozzolan, reacts with the calcium hydroxide liberated during calcium silicate hydration. It is believable to add FA and NMK particles in order to make high performance concrete. The physico-mechanical properties of FA blended cement mortars made with different percentages of NMK were investigated. The experimental results showed that the compressive and flexural strengths of mortars containing NMK are higher than those of FA blended cement mortar at 60 days of hydration age. It is demonstrated that the nanoparticles enhances strength than FA. In addition, the hydration process was monitored using scanning electron microscopy and thermal gravimetric analysis (TG). The results of these examinations indicate that NMK behaves not only as a filler to improve microstructure, but also as an activator to promote the pozzolanic reaction.  相似文献   

10.
A new modified antireflective coating was prepared by base catalyzed sol–gel process using tetraethylorthosilicate as precursor and polyvinyl butyral as modifier. The properties of the silica sols and AR coatings were characterized with Fourier-transfer infrared absorption spectroscopy, particle size analyzer, transmission electron microscope, programmable rheometer, UV–Vis spectrophotometry, ellipsometry, atomic force microscope and contact angle measurement. It was found that addition of 4% PVB greatly enhanced moisture-resistance of the AR coating. Optical transmittance of 4% PVB modified AR coating on BK7 substrate was found to be nearly 100%. The water contact angles of normal and 4% PVB modified AR coating were 51 and 53°, respectively, which indicates no significant increase of hydrophobicity of the modified coating. The peak transmittance of 4% PVB modified AR coating was almost unaffected after being exposed to the moist surroundings while that of normal silica coating decreased sharply from 99.8 to 96.5% within 2 weeks. The excellent moisture-resistance of PVB modified AR coating may be attributed to the adsorption of PVB on the surface of AR coating.  相似文献   

11.

Bamboo-/kenaf-reinforced epoxy hybrid composites were prepared by hand layup method. The aim of this study is to look into the hybridization effect of bamboo and kenaf fibers at different ratios on thermal and thermo-oxidative (TOD) stabilities of hybrid composites. Three types of hybrid composites were fabricated with different mass ratios of bamboo fiber mat (B) to kenaf fiber mat (K), namely B/K 70:30, B/K 50:50 and B/K 70:30 while maintaining total fiber loading of 40% by mass. The thermal stability and thermo-oxidative (TOD) stability were analyzed by thermogravimetric analyzer. Differential scanning calorimetry (DSC) was used to investigate the oxidation onset temperature (OOT) of all the composites. The results reveal that bamboo composite shows higher thermal stability than kenaf composite in both inert and oxidative atmospheres. An increase in bamboo fibers mass ratio in the hybrid composite improved the thermal and TOD stability. The thermal and TOD stabilities of the hybrid composites follow the sequence of B/K 70: 30?>?B/K 50:50?>?B/K 30:70. Pure epoxy composite recorded the highest OOT at 197.50 °C. The results show that the addition of natural fiber in the epoxy matrix has significantly reduced the OOT compared to the pure epoxy. Data obtained from this work will help us to fabricate a sustainable and biodegradable component for automotive or building materials.

  相似文献   

12.
The present study investigates the effect of hybrid fillers such as graphene nanoplatelets (GnPs) and Titanium di-oxide (TiO2) in polypropylene (PP) composites on the mechanical properties. The compatibilizing agent of Maleic anhydride grafted polypropylene (MAPP) are used in the polypropylene based composites to increase the interfacial adhesion between matrix and fillers. The experiments are designed according to L16 orthogonal array (OA) based design of experiments (DOE). The parameters selected for this study are GnPs, TiO2 and MAPP with four different levels are used.By using Orthogonal array and Taguchi based experimental design, the performance characteristics of tensile modulus, tensile strength, elongation at break and toughness can be analyzed with more objective through a small set of experiments.Taguchi based analysis are used to find out the optimal parameters to maximize the tensile properties for the GnPs and TiO2 reinforced PP hybrid composites. Further, analysis of variance (ANOVA) is investigated to identify the most significant parameters which influence the mechanical properties.From the analysis it was found that the optimal parameters of 3 ?wt% GnPs, 2 ?wt% TiO2 and 6 ?wt% MAPP for maximum tensile modulus and tensile strength. The most significant parameter for tensile modulus and tensile strength is GnPs followed by TiO2 and MAPP according to ANOVA analysis.  相似文献   

13.
In this work, for the first time, the Hydrophilic-Lipophilic Difference (HLD) framework for microemulsion formulation has been applied to silicone oils and silicone alkyl polyether surfactants. Based on the HLD equations and recently introduced mixing rules, we have quantified the hydrophobicity of the oils according to the equivalent alkane carbon number (EACN). We have found that, in a reference system containing sodium dihexyl sulfosuccinate (SDHS) as the surfactant, 0.65 centistoke (cSt) and 3.0 cSt silicone oils behave like n-dodecane and n-pentadecane, respectively. Silicone alkyl polyether surfactants were found to have characteristic curvatures ranging 3.4-18.9, exceeding that of most non-ionic surfactants. The introduction of methacrylic acid (MAA) and hydroxyethyl methacrylate (HEMA) to the aqueous phase caused a significant negative shift in HLD, indicative of an aqueous phase that is less hydrophilic than pure water. The more hydrophobic surfactants (largest positive curvatures) were used in order to compensate for this effect. These findings have led to the formulation of bicontinuous microemulsions (μEs) containing silicone oil, silicone alkyl polyether and reactive monomers in aqueous solution. Ternary phase diagrams of these systems revealed the potential for silicone-containing polymer composites with bicontinuous morphologies. These findings have also helped to explain the phase behavior of formulations previously reported in literature, and could help in providing a systematic, consistent approach to future silicone oil based microemulsion formulation.  相似文献   

14.
15.
Sulphate resistance and passivation ability of the mortars made from pozzolan cement of CEM IV/A (P) type according to European Standard EN 197-1 (zeolite blended cement with 60.82 mass% of PC clinker, 35.09 mass% of zeolite and 4.09 mass% of gypsum abbreviated as ZBC) and ordinary Portland cement (abbreviated as PC) are introduced. Resistance tests were performed in water and 5% sodium sulphate solution (both 20°C) for 720 days. The increased sulphate resistance of pozzolan cement relative to that of PC was found. The key quantitative insight into the hydrate phase behaviour is given by thermal analysis. This is due to pozzolanic reaction of zeolite with PC resulting in reduction of the formed Ca(OH)2 opposite to the reference PC. Ability of pozzolan cements with 15 to 50 mass% of zeolite to protect steel against corrosion was verified in 20°C/85% RH-wet air within 180-day cure. Steel was not corroded in the mortars made with pozzolan cement containing up to 35 mass% of zeolite. Pozzolan cement of CEM IV/A (P) type containing 35 mass% of zeolite is a suitable cementitious material for concrete structures exposed to sulphate attack. Steel is protected against corrosion by this pozzolan cement in the same measure as the reference PC.  相似文献   

16.
A facile laser-etching method was used for the one-step creation of various controllable dimensions of anisotropic micropatterns consisting of an alternating arrangement of microgrooves and microstripes with rugged nanoprotrusions, which after modified with fluoroalkylsilane reagent, showed perfect isotropic superhydrophobicity without apparent CA hystereses, water adhesion, and drag resistance, other than the conventional view of anisotropic surface microstructures with anisotropic surface dewetting. The detailed experiments and analyses have indicated that the introduction of the rugged nanoprotrusions on the surface of microstripes provided ideal 3D roughness, which could not only enhance the apparent contact angles close to 180 degrees by the "point" contact fashion to maximally reduce the liquid-solid contact area but, most importantly, make droplets easily roll off the surface without apparent CA hysteresis by regulating the triple-phase contact line (TCL) to become extremely discrete. These findings would be helpful in understanding the role of complex micro- and nanostructures on natural superhydrophobic biosurfaces and guiding the design of perfect artificial superhydrophobic materials for technological innovations such as the raindrop easy-cleaning, aquatic super-floating, and drag-reducing coatings.  相似文献   

17.
This study investigated the dynamic mechanical properties of hybrid intraply carbon/E-glass epoxy composites with different orientations and stacking sequences under different loading conditions with increasing temperature. A neat epoxy and five various hybrid composites such as Carbon (0°)/E-glass (90°), Carbon (45°)/E-glass (135°), Carbon (90°)/E-glass (0°), Carbon/E-glass (alternating layer), and Carbon/E-glass (alternating layer 45°) were manufactured. Three-point bending test and dynamic mechanical test were conducted to understand the flexural modulus and viscoelastic behavior (storage modulus, loss modulus, and loss tangent) of the composites. Dynamic mechanical test was performed with the dual cantilever method, at four different frequencies (1, 5, 10, and 20 Hz) and temperatures ranging from 30 to 150°C. The experimental results of storage modulus, loss modulus, and loss tangents were compared with the theoretical findings of neat epoxy and various hybrid composites. The glass transition temperature (Tg) increased with the increase in frequency. A linear fit of the natural log of frequency to the inverse of absolute temperature was plotted in the activation energy estimation. The interphase damping (tanδi) between plies and the strength indicator (Si) of the hybrid composites were estimated. It was observed that the neat epoxy had more insufficient storage and loss modulus and a high loss tangent at all the frequencies whereas hybrid composites had high storage and loss modulus and a low loss tangent for all the frequencies. Compared with other hybrid composites, Carbon (90°)/E-glass (0°) had higher strength and activation energy. The result of reinforcement of hybrid fiber in neat epoxy significantly increases the material's strength and stability at higher temperatures whereas decreasing free molecular movement.  相似文献   

18.
Strength characteristics of polyepoxy formulations with different contents and dispersities of Aerosil nanosilica were studied. The effect of silica on the swelling of epoxy-polymeric composite in water was examined.  相似文献   

19.
Several recent studies have shown that many oils, such as hydrocarbons, fluorocarbons, silicone and natural oils, are more readily dispersed as fine (micron-sized) droplets in water when the mixtures are almost completely degassed. These observations have not yet been fully explained and so this paper examines the nature of hydrophobicity of a wide range of oils and considers both the cavitation process and the surface charging expected during the separation of hydrophobic materials in water. Cavitation inside porous hydrophobic solids immersed in water is also considered. We also introduce a quick, easy and alternative method to freeze–thaw degassing, by which enhanced dispersions can be formed, which gives further support to the central role of degassing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号