首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrogenerated chemiluminescence, also known as electrochemiluminescence (ECL), is an electrochemically induced production of light by excited luminophores generated during redox reactions. It can be used to sense the charge transfer and related processes at electrodes via a simple visual readout; hence, ECL is an outstanding tool in analytical sensing. The traditional ECL approach measures averaged electrochemical quantities of a large ensemble of individual entities, including molecules, microstructures and ions. However, as a real system is usually heterogeneous, the study of single entities holds great potential in elucidating new truths of nature which are averaged out in ensemble assays or hidden in complex systems. We would like to review the development of ECL intensity and imaging based single entity detection and place emphasis on the assays of small entities including single molecules, micro/nanoparticles and cells. The current challenges for and perspectives on ECL detection of single entities are also discussed.

We summarize the history and recent development that has been made in the ECL detection of single entities.  相似文献   

2.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

3.
Thioglycolic acid (TGA) is an organic compound widely used in cosmetics that cause a variety of health problems when overexposed to it. So far many attempts have been made to develop methods for TGA detection, but most of them need sophisticated instrumentations and are a little bit complicated. Therefore, a simple, cheap and sensitive detection method of TGA is highly desired. Herein, we demonstrated for the first time an Au−S bonding amplified, highly sensitive electrochemiluminescence (ECL) sensing method for TGA detection using tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) as a luminophore and TGA as a self-co-reactant, via an anodic reaction at the Au electrode surface. Due to different molecular coordination environments of the TGA at the electrode surface, the ECL signal intensity of the developed ECL system gives much higher ECL signal in borate buffer than phosphate buffer of the same pH. Under the optimized experimental conditions, the ECL intensity has a direct relationship with the concentration of TGA in the range of 0.03 μM to 300 μM and a limit of detection of 0.013 μM (3σ/m). The reported ECL system has further been applied for the detection of TGA in cosmetics with acceptable recoveries.  相似文献   

4.
Electrochemiluminescence (ECL) has been widely applied in immunoassays because of low background, high sensitivity, and excellent spatiotemporal controllability. In order to meet the increasing demand for high efficiency and accuracy of immunoassays in complex conditions, considerable efforts have been devoted to ECL strategies with multiple-signal outputs. In this short review, we summarize the recent advances of ECL strategies based on multiple-signal outputs, which includes ratiometric ECL, ECL multiplex immunoassay (MIA), and ECL imaging. Their signal generation strategies and analysis applications for immunoassay are discussed in detail. Moreover, the challenges and prospects in this field from us are addressed.  相似文献   

5.
电化学发光成像技术作为一种新的生化分析手段,具有设备简单、反应可控、多信息化和可视化等优点. 目前,该技术已被用于便携式、微型化、高通量的电化学发光传感器中,并取得了一系列创新性成果. 本文结合作者课题组的研究进展,简要介绍了电化学发光成像技术在阵列传感分析和潜在指纹检测中的应用,并尝试着展望了今后的发展趋势.  相似文献   

6.
The electrochemical and electrochemiluminescence (ECL) detection of cell lines of Burkitt’s lymphoma (Ramos) by using magnetic beads as the separation tool and high‐affinity DNA aptamers for signal recognition is reported. Au nanoparticles (NPs) bifunctionalized with aptamers and CdS NPs were used for electrochemical signal amplification. The anodic stripping voltammetry technology employed for the analysis of cadmium ions dissolved from CdS NPs on the aggregates provided a means to quantify the amount of the target cells. This electrochemical method could respond down to 67 cancer cells per mL with a linear calibration range from 1.0×102 to 1.0×105 cells mL?1, which shows very high sensitivity. In addition, the assay was able to differentiate between target and control cells based on the aptamer used in the assay, indicating the wide applicability of the assay for diseased cell detection. ECL detection was also performed by functionalizing the signal DNA, which was complementary to the aptamer of the Ramos cells, with tris(2,2‐bipyridyl) ruthenium. The ECL intensity of the signal DNA, replaced by the target cells from the ECL probes, directly reflected the quantity of the amount of the cells. With the use of the developed ECL probe, a limit of detection as low as 89 Ramos cells per mL could be achieved. The proposed methods based on electrochemical and ECL should have wide applications in the diagnosis of cancers due to their high sensitivity, simplicity, and low cost.  相似文献   

7.
The ultrasensitive detection of microRNAs (miRNAs) is currently pursued for the diagnosis of diseases. Due to its outstanding sensitivity, electrochemiluminescence (ECL) is expected to be very effective toward the above goal. In this short review, bioanalytical strategies currently employed in ECL detections of miRNAs are summarized. ECL sensors based on electrochemiluminescent resonance energy transfer (ERET), hybridization chain reaction (HCR), strand displacement reaction (SDR), and other strategies, have an extremely low detection limit of 10?18 M miRNA. In particular, the establishment of miniaturized ECL sensors has shown great potential for point-of-need testing of diseases.  相似文献   

8.
Quantum dots on electrodes—new tools for bioelectroanalysis   总被引:1,自引:0,他引:1  
The review covers recent developments in which quantum dots (QDs) are combined with electrodes for detection of analytes. Special focus will be on the generation of photocurrents and the possibility of spatially resolved, light-directed analysis. Different modes for combining biochemical reactions with QDs will be discussed. Other applications involve the use of QDs as labels in binding analysis. Different methods have been developed for read-out. In addition to photocurrent analysis, voltammetric detection of metals and electrochemiluminescence (ECL) can be used. In the latter, light is the sensor signal. ECL-based systems combine the advantage of very sensitive analytical detection with rather simple instrumentation.
Figure
Scheme of an enzymatic signal chain on a quantum dot electrode. Here the detection of glucose is achieved by the conversion of the enzymatically generated NADH at the illuminated QDs  相似文献   

9.
《Electroanalysis》2017,29(9):2098-2105
An ultrasensitive electrochemiluminescence (ECL) immunosensor for the detection of tetrodotoxin (TTX) is proposed, which are composed of the branched poly‐(ethylenimine) (BPEI) functionalized graphene (BGNs)/Fe3O4‐Au magnetic capture probes and luminol‐capped gold nanocomposites (luminol‐AuNPs) as the signal tag. Herein, a typical sandwich immunecomplex was constructed on the glassy carbon electrode. The BGNs/Fe3O4‐Au hybrids could efficiently conjugate primary antibody via the Au−S chemical bonds or Au−N chemical bonds and rapidly separate under external magnetic field. The introduction of BPEI to GO could enhance the luminol‐ECL intensity. Meanwhile, the multifunctional nanocomposites have been proved with good water‐solubility, excellent electron transfer, outstanding stability, etc. The luminescent luminol‐AuNPs, a high efficient electrochemiluminescence marker, can be assembled on the second antibody, which can produce the ECL signal to achieve the determination of TTX. This proposed ECL immunosensor with a linear range from 0.01–100 ng/mL can be applied in the detection of TTX in real samples with satisfactory results.  相似文献   

10.
Point-of-care testing(POCT) technology is highly desirable for clinical diagnosis, healthcare monitoring,food safety inspection, and environment surveillance, because it enables rapid detection anywhere, anytime, and by anyone. Electrochemiluminescence(ECL) has been widely used in chemo-/bio analysis due to its advantages such as high sensitivity, simplicity, rapidity and easy to control, and is now attracting increasing attention for POCT applications. However, to realize the accurate on-site q...  相似文献   

11.
This communication presents an instrumental development based on the printed circuit board (PCB) technology to integrate electrochemiluminescence (ECL) analysis in microfluidic systems. PCB gold macro- (10 mm2) and micro- (0.09 mm2) electrodes and two ECL microfluidic devices are designed, fabricated and tested via luminol ECL detection. Potential modulation is performed between 0.7 and 0 V vs. Ag/AgCl for luminol oxidation, thus giving rise to on/off ECL responses in the presence of hydrogen peroxide. Synchronous detection is adopted to allow weak ECL signal recovery at a very low signal-to-noise ratio (SNR). The detection limit obtained with the two ECL microfluidic devices is 50 nM and 100 nM H2O2 for macroelectrodes and microelectrodes, respectively.  相似文献   

12.
Chai Y  Tian D  Gu J  Cui H 《The Analyst》2011,136(16):3244-3251
A novel electrochemiluminescence (ECL) aptasensor for platelet-derived growth factor B chain (PDGF-BB) assay was developed by assembling N-(aminobutyl)-N-ethylisoluminol functionalized gold nanoparticles (ABEI-AuNPs) with aptamers as nanoprobes. In the protocol, the biotinylated aptamer capture probes were first immobilized on a streptavidin coated gold nanoparticle (AuNPs) modified electrode, afterwards, the target PDGF-BB and the ABEI-AuNPs tagged aptamer signal probe were successively attached to the modified electrode by virtue of the dimer structure of PDGF-BB to fabricate a "sandwich" conjugate modified electrode, i.e. an aptasensor. ECL measurement was carried out with a double-step potential in carbonate buffer solution containing H(2)O(2). The aptasensor showed high sensitivity and selectivity toward PDGF-BB and specificity toward PDGF-BB aptamer. The detection limit was as low as 2.7 × 10(-14) M. In this work, the ABEI-AuNPs synthesized by a simple seed growth method have been successfully used as aptamer labels, which greatly amplified the ECL signal by binding numbers of ABEI molecules on the surface of AuNPs. The ABEI-AuNPs signal amplification is superior to other reported signal amplification strategies based on aptamer-related polymerase chain reaction or functionalized nanoparticles in simplicity, stability, labeling property and practical applicability. And the ABEI-AuNPs based nanoprobe is more sensitive than the luminol functionalized AuNPs based nanoprobe. Moreover, such an ultra-sensitive and low-cost assay can be accomplished with a simple and fast procedure by using a simple ECL instrumentation. The aptasensor was also applied for the detection of PDGF-BB in human serum samples, showing great application potential. Given these advantages, the ECL aptasensor is well suited for the direct, sensitive and rapid detection of protein in complex clinical samples.  相似文献   

13.
Electrochemiluminescence (ECL) integrates the advantages of electrochemical detection and chemiluminescent techniques. The method has received particular attention because it is highly sensitive and selective, has a wide linear range but low reagent costs. The use of nanomaterials with their unique physical and chemical properties has led to new kinds of biosensors that exhibit high sensitivity and stability. Compared to other nanomaterials, DNA nanostructures are more biocompatible, more hydrophilic, and thus less prone to nonspecific adsorption onto the electrode surface. We describe here a label-free and ultrasensitive ECL biosensor for detecting a cancer-associated microRNA at a femtomolar level. We have designed two auxiliary probes that cause the formation of a long-range self-assembly in the form of a μm-long 1-dimensional DNA concatamer. These can be used as carriers for signal amplification. The intercalation of the ECL probe Ru(phen)3 2+ into the grooves of the concatamers leads to a substantial increase in ECL intensity. This amplified sensor shows high selectivity for discriminating complementary target and other mismatched RNAs. The biosensor enables the quantification of the expression of microRNA-21 in MCF-7 cells. It also displays very low limits of detection and provides an alternative approach for the detection of RNA or DNA detection in diagnostics and gene analysis.
Figure
The long-range self-assembly DNA concatamers were used as carriers for signal amplification by the intercalation of numerous ECL probe (Ru(phen)3 2+) into the grooves of the DNA concatamers. Such signal amplification strategy lead to a substantial increase in ECL intensity and sensitivity.  相似文献   

14.
15.
A novel [Ru(bpy)2(dcbpy)NHS] labeling/aptamer‐based biosensor combined with gold nanoparticle amplification for the determination of lysozyme with an electrochemiluminescence (ECL) method is presented. In this work, an aptamer, an ECL probe, gold nanoparticle amplification, and competition assay are the main protocols employed in ECL detection. With all the protocols used, an original biosensor coupled with an aptamer and [Ru(bpy)2(dcbpy)NHS] has been prepared. Its high selectivity and sensitivity are the main advantages over other traditional [Ru(bpy)3]2+ biosensors. The electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM) characterization illustrate that this biosensor is fabricated successfully. Finally, the biosensor was applied to a displacement assay in different concentrations of lysozyme solution, and an ultrasensitive ECL signal was obtained. The ECL intensity decreased proportionally to the lysozyme concentration over the range 1.0×10?13–1.0×10?8 mol L?1 with a detection limit of 1.0×10?13 mol L?1. This strategy for the aptasensor opens a rapid, selective, and sensitive route for the detection of lysozyme and potentially other proteins.  相似文献   

16.
Miniaturized isothermal nucleic acid amplification, a review   总被引:1,自引:0,他引:1  
Asiello PJ  Baeumner AJ 《Lab on a chip》2011,11(8):1420-1430
Micro-Total Analysis Systems (μTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.  相似文献   

17.
Organic nanoparticles (ONPs) are one type of nanoparticles assembled by the organic compounds with one dimension smaller than 100 nm. ONPs are alternative nanomaterials in organic light-emitting diode and analytical applications due to their unique optical and electrochemical properties. In electrogenerated chemiluminescence (ECL) assays, ONPs are generally taken as signal reporters for chemical sensing and biosensing. In this opinion, we focus on recent developments of ONPs as ECL luminophores in analytical application. The types and ECL mechanisms of ONPs systems and the approaches of ONPs-based ECL methods are briefly introduced. New advances on the improvement of the ECL efficiency of ONPs are highlighted. The challenges and perspectives of ONPs-based ECL methods are discussed.  相似文献   

18.
In this review, the basic principles and apparatus of ECL imaging were briefly introduced at first. Then several latest and representative applications of ECL imaging based on nanomaterials and micro-/nanostructures were overviewed. Finally, the superiorities and challenges in ECL imaging for further development were discussed.  相似文献   

19.
Electrochemiluminescence (ECL) is a kind of luminescent phenomenon caused by electrochemical reactions. Based on the advantages of ECL including low background, high sensitivity, strong spatiotemporal controllability and simple operation, ECL imaging is able to visualize the ECL process, which can additionally achieve high throughput, fast and visual analysis. With the development of optical imaging technique, ECL imaging at micro- or nanoscale has been successfully applied in immunoassay, cell imaging, biochemical analysis, single-nanoparticle detection and study of mechanisms and kinetics of reactions, which has attracted extensive attention. In this review, the basic principles and apparatus of ECL imaging were briefly introduced at first. Then several latest and representative applications of ECL imaging based on nanomaterials and micro-/nanostructures were overviewed. Finally, the superiorities and challenges in ECL imaging for further development were discussed.  相似文献   

20.
Electrochemiluminescence (ECL) based on conjugated polymers or oligomers is persistently being pursued owing to its huge application scope ranging from ultra-sensitive bioanalysis to ultra-resolution imaging and spectroscopy. Because of the theoretical limit in radiative exciton generation yield (typically ∼25 %) of those polymers or oligomers, the corresponding ECL efficiency is still limited, which hampers its ECL performance and its related applications. Herein, we report ECL based on a thermally activated delayed fluorescence (TADF) polymer scaffold, which is characteristic of all-exciton harvesting in the ECL process, and thus potentially capable of achieving ∼100 % ECL efficiency. These desired properties of the TADF polymer ECL is attributed to a fast and efficient up-conversion process from non-radiative triplet to radiative singlet states under thermal activation, which is absent in conventional fluorescent polymers/oligomers, such as F8BT. In this study, various ECL modes, including annihilation or co-reactant mode using TPrA or S2O82− as co-reactant, are confirmed for our model TADF polymer ECL system, which was different from fluorescent polymer ECL counterpart. Furthermore, solid-state ECL sensing on L-cysteine (an important marker of disease) is also evaluated by using the model TADF polymer. Ultralow detection limit in combination with high sensitivity and good specificity are achieved for this model system, indicative of a high potential of the TADF polymer scaffold for applications in the broad field of ECL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号