首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
MOF(Fe)的制备及其氧气还原催化性能   总被引:3,自引:0,他引:3  
以硝酸铁为金属离子前驱体、均苯三甲酸为有机配体,采用水热法合成了金属有机骨架MOF(Fe)催化剂,应用X射线衍射、N2吸附-脱附、透射电镜、红外光谱和热重等方法对催化剂的结构进行了表征,并采用循环伏安法测试了催化剂在碱性电解质中的氧气还原(ORR)催化性能,同时也采用旋转圆盘电极进一步研究了催化剂的ORR的动力学行为.?结果表明,所制MOF(Fe)具有很好的晶型结构、大比表面积、丰富的微孔以及较高的热稳定性. 且表现出很好的ORR催化活性. ORR的反应历程随电位的改变而改变:电位在-0.3到0.50 V范围内,ORR为2电子途径;随着电位从-0.50 V升至-0.95 V,ORR从2电子向4电子途径转变. 另外,该催化剂在碱性电解质中也表现出较好的氧气析出(OER)催化性能,这为制备用于ORR和OER的高效非贵金属催化剂提供了新的途径.  相似文献   

2.
A new approach for the characterization of CO2 methanation catalysts prepared by thermal decomposition of a nickel MOF by hard X-ray photon-in/photon-out spectroscopy in form of high energy resolution fluorescence detected X-ray absorption near edge structure spectroscopy (HERFD-XANES) and valence-to-core X-ray emission (VtC-XES) is presented. In contrast to conventional X-ray absorption spectroscopy, the increased resolution of both methods allows a more precise phase determination of the final catalyst, which is influenced by the conditions during MOF decomposition.  相似文献   

3.
Metal–organic framework (MOF)-derived Co-N-C catalysts with isolated single cobalt atoms have been synthesized and compared with cobalt nanoparticles for formic acid dehydrogenation. The atomically dispersed Co-N-C catalyst achieves superior activity, better acid resistance, and improved long-term stability compared with nanoparticles synthesized by a similar route. High-angle annular dark-field–scanning transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and X-ray absorption fine structure characterizations reveal the formation of CoIINx centers as active sites. The optimal low-cost catalyst is a promising candidate for liquid H2 generation.  相似文献   

4.
Single-atom catalysts (SACs) supported on two-dimensional (2D) materials are highly attractive for maximizing their catalytic activity.However,graphene based SACs are primarily bonded with nitrogen and carbon sites,resulting in poor performance for the oxygen evolution reaction (OER).Herein,we develop a general bimetal-ion adsorption strategy for the synthesis of individually dispersed Ni SACs anchored on the oxygenated sites of ultrathin reduced graphene oxide as efficient OER electrocatalysts.The resultant Ni SACs for OER in alkaline electrolyte exhibit a highly stable overpotential of 328 mV at the current density of 10 mA cm~(-2),and Tafel slope of 84 mV dec~(-1) together with long-term durability and negligible degradation for 50 h,which is greatly outperform its counterparts of nitrogen bonded Ni SACs (564 mV,364 mV dec~(-1)) and Ni(OH)_2 nanoparticles anchored on graphene (450 mV,142 mV dec~(-1)),and most reported Ni based OER electrocatalysts.Furthermore,the extended X-ray absorption fine structure at the Ni K-edge and theoretical simulation reveal that the nickel-oxygen coordination significantly boost OER performance.Therefore,this work will open numerous opportunities for creating novel-type 2D SACs via oxygen-metal bonding as highly robust OER catalysts.  相似文献   

5.
Unraveling the complex interaction between catalysts and reactants under operando conditions is a key step toward gaining fundamental insight in catalysis. We report the evolution of the structure and chemical composition of size-selected micellar Pt nanoparticles (~1 nm) supported on nanocrystalline γ-Al(2)O(3) during the catalytic oxidation of 2-propanol using X-ray absorption fine-structure spectroscopy. Platinum oxides were found to be the active species for the partial oxidation of 2-propanol (<140 °C), while the complete oxidation (>140 °C) is initially catalyzed by oxygen-covered metallic Pt nanoparticles, which were found to regrow a thin surface oxide layer above 200 °C. The intermediate reaction regime, where the partial and complete oxidation pathways coexist, is characterized by the decomposition of the Pt oxide species due to the production of reducing intermediates and the blocking of O(2) adsorption sites on the nanoparticle surface. The high catalytic activity and low onset reaction temperature displayed by our small Pt particles for the oxidation of 2-propanol is attributed to the large amount of edge and corner sites available, which facilitate the formation of reactive surface oxides. Our findings highlight the decisive role of the nanoparticle structure and chemical state in oxidation catalytic reactions.  相似文献   

6.
The potential to exert atomistic control over the structure of site-isolated catalyst sites, as well as the topology and chemical environment of interstitial pore spaces, has inspired efforts to apply porous metal-organic frameworks (MOFs) as catalysts for fine chemical synthesis. In analogy to enzyme-catalyzed reactions, MOF catalysts have been proposed as platforms in which substrate confinement could be used to achieve chemo- and stereoselectivities that are orthogonal to solution-phase catalysts. In order to leverage the tunable pore topology of MOFs to impact catalyst selectivity, catalysis must proceed at interstitial catalyst sites, rather than at solvent-exposed interfacial sites. This Minireview addresses challenges inherent to interstitial MOF catalysis by 1) describing the diffusional processes available to sorbates in porous materials, 2) discussing critical factors that impact the diffusion rate of substrates in porous materials, and 3) presenting in operando experimental strategies to assess the relative rates of substrate diffusion and catalyst turnover in MOF catalysis. It is anticipated that the continued development of in operando tools to evaluate substrate diffusion in porous catalysts will advance the application of these materials in fine chemical synthesis.  相似文献   

7.
8.
Multi-metal electrocatalysts provide nearly unlimited catalytic possibilities arising from synergistic element interactions. We propose a polymer/metal precursor spraying technique that can easily be adapted to produce a large variety of compositional different multi-metal catalyst materials. To demonstrate this, 11 catalysts were synthesized, characterized, and investigated for the oxygen evolution reaction (OER). Further investigation of the most active OER catalyst, namely CoNiFeMoCr, revealed a polycrystalline structure, and operando Raman measurements indicate that multiple active sites are participating in the reaction. Moreover, Ni foam-supported CoNiFeMoCr electrodes were developed and applied for water splitting in flow-through electrolysis cells with electrolyte gaps and in zero-gap membrane electrode assembly (MEA) configurations. The proposed alkaline MEA-type electrolyzers reached up to 3 A cm−2, and 24 h measurements demonstrated no loss of current density of 1 A cm−2.  相似文献   

9.
The structure of silica SBA‐15‐supported molybdenum oxide catalysts is investigated during selective oxidation of propylene at 500 °C using operando Raman spectroscopy. The active catalysts contain mixtures of dispersed molybdenum oxide species exhibiting monooxo and dioxo structure. An increase in molybdenum oxide loading results in a decrease of the ratio of dioxo and monooxo species from 3.8 to 1.9, as determined by quantitative analysis of Raman spectra. Additional in situ Raman studies at 500 °C reveal that the dioxo/monooxo ratio increases in the presence of steam at higher molybdenum oxide loadings. The observed structural changes are assigned to shifts in the equilibrium between dioxo and monooxo species resulting from hydration/dehydration of the catalyst. This study demonstrates that the detailed structure of nanostructured molybdenum oxide catalysts depends on temperature, gas‐phase composition, and molybdenum oxide loading.  相似文献   

10.
Understanding how a photocatalyst modulates its oxidation state, size, and structure during a photocatalytic reaction under operando conditions is strongly limited by the mismatch between (catalyst) volume sampled by light and, to date, the physicochemical techniques and probes employed to study them. A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) of the light‐matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni and bimetallic CuNi catalysts for hydrogen production from renewables was carried out. The combined information unveils an unexpected key catalytic role involving the phase contact between the reduced and oxidized non‐noble metal phases in all catalysts and, additionally, reveals the source of the synergistic Cu‐Ni interaction in the bimetallic material. The experimental method is applicable to operando studies of a wide variety of photocatalytic materials.  相似文献   

11.
Among the two half-reactions of the electrochemical water splitting, the anodic oxygen evolution reaction (OER) is a kinetically sluggish process and usually requires noble metal oxide catalysts. Therefore, the development of highly active, noble metal-free, and durable catalysts for OER is an urgent need for sustainable applications. The encapsulation of transition-metal alloyed nanoparticles in graphitic carbon layers, with core-shell features, is a viable approach for establishing an undegradable and highly efficient catalyst toward OER. Furthermore, the reactivity of the carbon shell surface can be further improved by the electron transfers between the core alloy and carbon shell, through a control of the alloyed nanoparticle compositions, or through a chemical doping. Nevertheless, it is still not clear whether the incorporation of a chemical dopant directly into the carbon shells systematically promotes the catalytic activities toward OER. To clarify this point, we synthetize trimetallic (CoNiFe) nanoparticles encapsulated in graphitic carbon shells by pyrolysis of metal?organic frameworks. We then investigate the effect of a doped graphitic carbon shell by incorporating non-metallic elements such as sulfur, phosphorus, and selenium. The main finding is that all doped CoNiFe@C core-shell catalysts exhibit an enhanced catalytic activity toward OER in the alkaline electrolyte with a low overpotential, a small Tafel slope, and long stability, which are all being comparable to those of RuO2 benchmark. Electrochemical impedance spectroscopy, X-ray photoelectron spectroscopic, and Raman measurements collected at different applied potentials during the OER process indicate that the doping of graphitic carbon shell significantly improves the interfacial electron-transfer kinetics and facilitates the adsorption of OH? ion as well as promotes the formation of metal oxyhydroxide, which positively affect the OER performances. Moreover, this improvement in OER efficiency upon incorporating of a chemical doping is rationalized by the optimization of the Gibbs free energy of OER intermediates, thereby remarkably reducing the required energy input of rate-determining step, as elucidated by the density functional theory calculations.  相似文献   

12.
Ni-containing catalysts are investigated under reaction conditions for two different cases, during sulfidation, with Ni-Mo based catalysts, and during ammoxidation reaction, with the Ni-Nb catalysts. It is shown how Raman spectroscopy can follow some of the transformations of these catalysts upon different treatments. For the NiMo/Al(2)O(3)-SiO(2) system it was possible to identify some of the sulfided Mo species formed during the sulfidation of the oxide precursors, while for the bulk Ni-Nb oxide catalysts the simultaneous reaction-Raman results strongly suggest that the incipient interaction between niobium and nickel oxides at low Nb/Ni atomic ratios is directly related to catalytic activity, and that a larger size well-defined NiNb(2)O(6) mixed oxide phase is not active for this reaction. Moreover, the promotion by niobium doping appears to be limited to a moderate niobium loading. It was found that in situ and operando Raman are valuable techniques that allowed the identification of active Mo-S and Ni-Nb species under reaction conditions, and that are not stable under air atmospheres.  相似文献   

13.
Establishing the atomic-scale structure of metal-oxide surfaces during electrochemical reactions is a key step to modeling this important class of electrocatalysts. Here, we demonstrate that the characteristic (√2×√2)R45° surface reconstruction formed on (001)-oriented magnetite single crystals is maintained after immersion in 0.1 M NaOH at 0.20 V vs. Ag/AgCl and we investigate its dependence on the electrode potential. We follow the evolution of the surface using in situ and operando surface X-ray diffraction from the onset of hydrogen evolution, to potentials deep in the oxygen evolution reaction (OER) regime. The reconstruction remains stable for hours between −0.20 and 0.60 V and, surprisingly, is still present at anodic current densities of up to 10 mA cm−2 and strongly affects the OER kinetics. We attribute this to a stabilization of the Fe3O4 bulk by the reconstructed surface. At more negative potentials, a gradual and largely irreversible lifting of the reconstruction is observed due to the onset of oxide reduction.  相似文献   

14.
All studies on oxygen-evolution reaction by Mn oxides in the presence of cerium(IV) ammonium nitrate (CAN) have been so far carried out by synthesizing Mn oxides in the first step. And then, followed by the investigation of the Mn oxides in the presence of oxidants for oxygen-evolution reaction (OER). This paper presents a case study of a new and promising strategy for in situ catalyst synthesis by the adding MnII to either CAN or KMnO4/CAN solution, resulting in the formation of Mn-based catalysts for OER. The catalysts were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. Both compounds contained nano-sized particles that catalyzed OER in the presence of CAN. The turnover frequencies for both catalysts were 0.02 (mmol /molMn⋅s).  相似文献   

15.
A density functional theory (DFT) approach was used to predict the thermodynamic energy barriers of the oxygen evolution reaction (OER) for three functionalized Metal‐organic Frameworks (MOFs). A UiO‐66(Zr) MOF design was selected for this study that incorporates three linker designs, a 1,4‐benzenedicarboxylate (BDC), BDC functionalized with an amino group (BDC + NH2), and BDC functionalized with nitro group (BDC + NO2). The study found several key differences between homogeneous planar catalyst thermodynamics and MOF‐based thermodynamics, the most significant being the non‐unique or heterogeneity of reaction sites. Additionally, the functionalization of the MOF was found to significantly influence the hydroperoxyl binding energy, which proves to be the largest hurdle for both oxide and MOF‐based catalyst. Both of these findings provide evidence that many of the limitations precluding planar homogeneous catalysts can be surpassed with a MOF‐based catalyst. The BDC + NH2 proved to be the best performing catalyst with a predicted over‐potential for spontaneous OER evolution to be 3.03eV. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
催化剂的活性与其结构紧密相关,研究催化剂的构效关系以及可控合成高效电催化剂, 并探究其催化机制, 一直是科学研究的核心。贵金属铂是优异的电解水析氢的催化剂, 同时也是直接醇燃料电池阳极氧化的良好催化剂,而贵金属钌是优异的电解水析氧催化剂。这些与燃料电池及氢能相关的重要反应催化剂,可通过合成Pt、Au及Ru的合金催化剂, 通过应力效应、电子效应及团簇效应, 可有效提高金属催化剂的活性, 并实现多功能电催化性能。本文报道了可控合成低结晶度的AuPt-Ru合金异质结,并通过元素扫描分析及X射线衍射分析确认其结构。该催化剂表现出了非常优异的电催化氧化乙醇活性, 其归一化到Pt的质量活性达到了为21.4 A·mg-1Pt, 远远高于对照组样品AuPt及RuAuPt混合相催化剂及文献报道样品。催化剂同样表现出了非常好的乙醇氧化稳定性, 但是其活性的衰减与其Ru组分的流失紧密相关。我们同时通过电化学原位红外光谱,研究了该催化剂乙醇氧化中间产物, 分析了其反应机理。该催化剂同样表现出了优异的碱性电解水析氢及析氧催化活性,其析氢电流10 mA·cm-2对应的过电位为30 mV, Tafel斜率为45 mV·dec-1, 优于AuPt及RuPtAu对照组样品。该催化剂优异的电化学性能主要归结于其低结晶度和异质结及其伴随的应力效应及团簇效应。本报道提供了一种可控合成具有异质结结构的金属合金催化剂, 突出了其对实现多功能、 高性能合金电催化剂的重要性。  相似文献   

17.
Development of high-efficiency and low-cost electrocatalyst for oxygen evolution reaction(OER) is very important for use at alkaline water electrolysis.Metal-organic frameworks(MOF) provide a rich platform for designing multi-functional materials due to their controllable composition and ultra-high surface area.Herein,we report our findings in the development of amorphous nickel-cobalt bimetal-organic framework nanosheets with crystalline motifs via a simple "ligands hybridization engineering" strategy.These complexes' ligands contain inorganic ligands(H_2 O and NO_3) and organic ones,hexamethylenetetramine(HMT).Further,we investigated a series of mixed-metal with multi-ligands materials as OER catalysts to explore their possible advantages and features.It is found that the Ni doping is an effective approach for optimizing the electronic configuration,changing lattice ordering degree,and thus enhancing activities of HMT-based electrocatalysts.Also,the crystalline-amorphous boundaries of various HMTbased electrocatalyst can be easily controlled by simply changing amounts of Ni-precursor added.As a result,the optimized ultrathin(Co,0.3 Ni)-HMT nanosheets can reach a current density of 10 mA cm-2at low overpotential of 330 mV with a small Tafel slope of 66 mV dec-1.Our findings show that the electronic structure changes induced by Ni doping,2 D nanosheet structure,and MOF frameworks with multiligands compositions play critical roles in the enhancement of the kinetically sluggish electrocatalytic OER.The present study emphasizes the importance of ligands and active metals via hybridization for exploring novel efficient electrocatalysts.  相似文献   

18.
Electrochemical water splitting is one of the potential approaches for making renewable energy production and storage viable. The oxygen evolution reaction (OER), as a sluggish four-electron electrochemical reaction, has to overcome high overpotential to accomplish overall water splitting. Therefore, developing low-cost and highly active OER catalysts is the key for achieving efficient and economical water electrolysis. In this work, Fe-doped NiMoO4 was synthesized and evaluated as the OER catalyst in alkaline medium. Fe3+ doping helps to regulate the electronic structure of Ni centers in NiMoO4, which consequently promotes the catalytic activity of NiMoO4. The overpotential to reach a current density of 10 mA cm−2 is 299 mV in 1 m KOH for the optimal Ni0.9Fe0.1MoO4, which is 65 mV lower than that for NiMoO4. Further, the catalyst also shows exceptional performance stability during a 2 h chronopotentiometry testing. Moreover, the real catalytically active center of Ni0.9Fe0.1MoO4 is also unraveled based on the ex situ characterizations. These results provide new alternatives for precious-metal-free catalysts for alkaline OER and also expand the Fe-doping-induced synergistic effect towards performance enhancement to new catalyst systems.  相似文献   

19.
Nickel iron oxyhydroxide is the benchmark catalyst for the oxygen evolution reaction (OER) in alkaline medium. Whereas the presence of Fe ions is essential to the high activity, the functions of Fe are currently under debate. Using oxygen isotope labeling and operando Raman spectroscopic experiments, we obtain turnover frequencies (TOFs) of both Ni and Fe sites for a series of Ni and NiFe layered double hydroxides (LDHs), which are structurally defined samples of the corresponding oxyhydroxides. The Fe sites have TOFs 20–200 times higher than the Ni sites such that at an Fe content of 4.7 % and above the Fe sites dominate the catalysis. Higher Fe contents lead to larger structural disorder of the NiOOH host. A volcano-type correlation was found between the TOFs of Fe sites and the structural disorder of NiOOH. Our work elucidates the origin of the Fe-dependent activity of NiFe LDH, and suggests structural ordering as a strategy to improve OER catalysts.  相似文献   

20.
Nickel iron oxyhydroxide is the benchmark catalyst for the oxygen evolution reaction (OER) in alkaline medium. Whereas the presence of Fe ions is essential to the high activity, the functions of Fe are currently under debate. Using oxygen isotope labeling and operando Raman spectroscopic experiments, we obtain turnover frequencies (TOFs) of both Ni and Fe sites for a series of Ni and NiFe layered double hydroxides (LDHs), which are structurally defined samples of the corresponding oxyhydroxides. The Fe sites have TOFs 20–200 times higher than the Ni sites such that at an Fe content of 4.7 % and above the Fe sites dominate the catalysis. Higher Fe contents lead to larger structural disorder of the NiOOH host. A volcano‐type correlation was found between the TOFs of Fe sites and the structural disorder of NiOOH. Our work elucidates the origin of the Fe‐dependent activity of NiFe LDH, and suggests structural ordering as a strategy to improve OER catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号