首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a crucial role in chemical signaling processes of biological cells. Electrochemistry is one of the rare methods able to directly detect these species. ROS and RNS can be monitored in the local microenvironment of cells in real time at the site where the actual signaling takes place. This review presents recent advances made with amperometric electrochemical techniques. Existing challenges for the quantification of ROS and RNS in biological systems are discussed to promote the development of innovative and reliable cell-based assays. Figure Reactive oxygen and nitrogen species (ROS & RNS) are produced biological cells. An amperometric sensor is placed in close proximity. The recorded current I is used to determine fluxes of certain species.
Sabine BorgmannEmail:
  相似文献   

2.
Use of robust and safe water disinfection technologies which are inexpensive and energy-efficient are need of the hour to combat the problem of inadequate access of safe and clean drinking water. Energy and chemically intensive water treatment technologies warrant the need for a safe and environmentally sound treatment technology. Electrochemical disinfection or electrodisinfection (ED) is experiencing a great resurgence among the scientific communities owing to its novel use of electrode materials and electric current in an inexpensive and energy-efficient way for achieving the inactivation of microorganisms. Among the various electrodes used in the ED, boron-doped diamonds emerge as a sustainable alternate for their ability to electro generate strong potent oxidants which result in effective pathogen control in drinking water. ED for disinfecting waters occurs via generation of the reactive species which act in the bacterial inactivation mechanisms. In this mini-review, a critical discussion on the fundamentals and applications of promising electrochemical methods using boron-doped diamond anodes (namely electrochemical oxidation), evidencing their advantages for the remediation of drinking water infected with waterborne agents, is given.  相似文献   

3.
《中国化学快报》2020,31(10):2575-2582
Heavy metal complexes with high mobility are widely distributed in wastewater from modern industries, which are more stable and refractory than free heavy metal ions. Their removals from wastewater draw increasing attentions and various technologies have been developed, among which advanced oxidation processes (AOPs) are more effectively and promising. Progresses on five representative types of AOPs, including Fenton (like) oxidation, electrochemical oxidation, photocatalytic oxidation, ozonation and discharge plasma oxidation for heavy metal complexes degradation are summarized in this review. Their rationales, advantages, applications, challenges and prospects are introduced independently. Combinations among these AOPs, such as electrochemical Fenton oxidation and photoelectrocatalytic oxidation, are also comprehensively highlighted. Future efforts should be made to reduce acid requirement and scale up for practical applications of AOPs for heavy metal complex degradation efficiently and cost-effectively.  相似文献   

4.
新型二氧化铅阳极电催化降解有机污染物的特性研究   总被引:37,自引:0,他引:37  
通过XRD、SEM等表征,以酚类化合物为目标污染物,研究了经改性的新型含氟β-PbO2阳极电催化氧化污染物的特性.结果表明,该电极对酚类有机污染物的降解显示了良好的电催化活性、稳定性和抗腐蚀性,有较好的环保应用前景.进一步通过羟基自由基清除剂异丙醇加入前后降解效果的比较证实了本系统中有机污染物的降解主要基于羟基自由基的作用机理,是一种电化学高级氧化工艺.  相似文献   

5.
The presence of recalcitrant organic compounds in wastewater poses a serious threat to the ecosystem and human health. Electrochemical advanced oxidation processes constitute a promising way for the mineralization of persistent organic compounds. They are commonly used for the transformation of organic pollutants into more biodegradable compounds or their complete removal from water. In this review, we present the recent advances in the use of boron-doped diamond (BDD) electrodes in the anodic oxidation process for the mineralization of real wastewater. First, the characteristic properties of BDD electrodes are discussed followed by the degradation mechanism. In addition, an overview on the application of BDD electrodes for mineralization of real wastewater is provided.  相似文献   

6.
《中国化学快报》2022,33(10):4461-4477
In recent years, with the emergence of new pollutants, the effective treatment of wastewater has become very important. Persulfate-based advanced oxidation processes have been successfully applied to the treatment of wastewater, such as wastewater containing antibiotics, pharmaceuticals and personal care products, dyes, endocrine-disrupting chemicals, chlorinated organic pollutants, and phenolics, for the degradation of refractory organic contaminants. This paper summarizes the production of sulfate radicals, which can be generated by the activation of persulfate via conventional and emerging approaches. The existing problems of persulfate-based advanced oxidation processes were analyzed in detail, including residual sulfates, coexisting factors (coexisting inorganic anions and natural organic matter), and energy consumption. This paper proposes corresponding possible solutions to the problems mentioned above, and this paper could provide a reference for the application of persulfate-based advanced oxidation processes in actual wastewater treatment.  相似文献   

7.
Glassy carbon electrodes were modified electrochemically by pretreatment in sulfate, phosphate or carbonate solutions by means of cycling the potential well into the positive limit of the solvent. Electrodes treated in this manner were then used to incorporate and concentrate a variety of redox species that were either cations or aromatic containing compounds, including Ru(bpy)2+3, Ru(NH3)3+6, Cu(NH3)2+4, ferrocene, methylviologen, 1,4-benzoquinone, anthraquinone-2-sulfonate, riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Surface-equivalent concentrations ranged from 5 × 10?9 to 1 × 10?7 mol cm?2 for electrodes pretreated for 10 min in sulfuric acid. An E1/2 vs. pH study of 1,4-benzoquinone, riboflavin, FMN and FAD in modified electrodes shows that the pKa values shift toward higher pH (nearly 2 pH units). Results concerning the incorporation of redox compounds detected only by mediation with other electroactive complexes and the study of the modified electrodes in electrocatalysis are also discussed.  相似文献   

8.
In recent years, there has been increasing interest in finding innovative solutions for the efficient removal of contaminants from water, soil and air. The present tutorial review summarizes the results of an extensive selection of papers dealing with electrochemical oxidation, which is proposed as an alternative for treating polluted wastes. Both the direct and indirect approaches are considered, and the role of electrode materials is discussed together with that of other experimental parameters. Apart from discussing the possibility of removing selected contaminants from water using different anodes, efficiency rates for pollutant removal have been collected, the dependence of these rates on operational conditions advantages and disadvantages determining the further full-scale commercial application.  相似文献   

9.
In the field of advanced oxidation processes(AOPs) of wastewater, many materials can be used as heterogeneous catalysts. The role of these catalysts is to activate oxidants and generate reactive oxygen species(ROS) to decompose refractory pollutants. Perovskite oxide, an emerging catalyst in the field of AOPs, has been extensively studied in wastewater treatment. Nevertheless, the application of perovskite in AOP systems still faces some problems, such as leaching of metal ions, a small surface ...  相似文献   

10.
In order to evaluate the chemiluminescence (CL) reagents for selective detection of reactive oxygen species (ROS), we comprehensively measured the CL responses of 20 CL reagents (three luminol derivatives, two imidazopyrazinone derivatives, eight lophine derivatives, six acridinium ester derivatives and lucigenin) against six types of ROS (superoxide anion: O2, hydroxyl radical: OH, hydrogen peroxide: H2O2, hypochlorite anion: ClO, singlet oxygen: 1O2, and nitric oxide: NO). As a result of the screening, it was found that nine CL reagents selectively detected O2 while one CL reagent selectively detected OH. However, no CL reagent had selectivity on the detection of H2O2, ClO, 1O2 and NO. Our screening results could help to select the most suitable CL reagent for selective determination of different ROS.As an application study, 4-methoxyphenyl-10-methylacridinium-9-carboxylate (MMAC), one of the acridinium ester derivatives, showed high selectivity on the detection of O2, and thus was applied to the assay of superoxide dismutase (SOD) activity. The dynamic range and detection limit of the developed CL assay were 0.1-10 and 0.06 U mL−1, respectively. Significant correlation (r = 0.997) was observed between the results by the CL assay using MMAC and the spectrophotometric assay using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt.  相似文献   

11.
Electrochemical oxidation of selenocystine (SeCys) and selenomethionine (SeMet), on a gold electrode was studied by cyclic voltammetry (CV), rotating disk electrode technique (RDE) and chronocoulometry (CC). In 0.2 mol/L HAc-NaAc (pH = 3.90) supporting electrolyte, anodic peak I potential of SeCys and SeMet was 810 mV and 638 mV, respectively, and this electrode process was diffused controlled. The electrochemical oxidation process of SeCys, in which six electron-transfers were involved, yielded selenocystine selenoxide. The electrochemical oxidation process of SeMet, in which two electron-transfers were involved, yielded selemethionine selenoxide.  相似文献   

12.
In this mini-review, the homogeneous and heterogeneous EAOPs-oxidant processes were summarized. The reaction mechanisms of different EAOPs combined with different oxidants are elucidated in detail, as well as the synergistic effect for improving the treatment efficiency.  相似文献   

13.
The industrial processing of meat and dairy production uses large amounts of fresh water, therefore, generates a significant volume of wastewaters. The treatment of these effluents has been performed using different technologies from biological to electrochemical advanced oxidation processes. Under the circular economy concept, the lack of available freshwater resources has increased the interest in reusing wastewater from slaughterhouses, and even in the recovering of by-products.This article reviews the application of electrochemical treatments to slaughterhouse and dairy wastewaters. In addition, an overview of added-value products and energy recovery from these industrial wastewaters is also presented with future perspectives.  相似文献   

14.
本文对半胱氨酸和谷胱甘肽的氧化反应动力学的研究进展进行了综述。阐述了含硫氨基酸的生化性质、应用及其重要作用。分别对半胱氨酸、谷胱甘肽的氧化产物分析和动力学机理的研究成果进行了介绍。提出了巯基氨基酸及肽氧化反应动力学研究难点和可行的研究手段及方法。  相似文献   

15.
The paper deals with the influence of anode material on the efficiency of degradation for organic pollutants in water system.The electrochemical performance of fluorine ion doped lead dioxide(F--PbO2) electrode for the degradation of aniline was compared with that of undoped lead dioxide(PbO2) electrode by ultraviolet-visible(UV-Vis) spectroscopy,linear voltammetry and other analytical methods,such as the measurement by chemical oxygen demand analyzer,high performance liquid chromatography and scanning electron micrography.It was shown that both PbO2 electrode and F--PbO2 electrode could make aniline be mineralized completely and have the same degradation course,but F--PbO2 electrode has much higher electrocatalytic activity than undoped PbO2 electrode for the electrochemical degradation of aniline.The experimental results confirm that F--PbO2 electrode has much higher potential for oxygen evolution than undoped PbO2 electrode.  相似文献   

16.
17.
This review provides a current opinion about the most recent advances in the development of novel materials (i.e., anodes and cathodes), as well as new synthesis methodologies, which have been used in water and wastewater treatment by electrochemically driven oxidation technologies. The first section focuses on the advances to produce novel anodic materials comprising the active anodes — which play a key role in direct and indirect oxidation and the nonactive materials — which attract attention due to their high capacity to generate hydroxyl radicals. The second section describes recent progress on the novel emerging cathodic materials that are directly related to in situ electrogeneration of oxidants and are commonly applied in the electro-Fenton technology. Finally, the perspectives and prospects of these novel electrode materials for environmental applications are given.  相似文献   

18.
Reactive oxygen and nitrogen species (ROS and RNS) play important roles in various physiological processes (e.g. phagocytosis) and pathological conditions (e.g. cancer). The primary ROS/RNS, viz., hydrogen peroxide, peroxynitrite ion, nitric oxide, and nitrite ion, can be oxidized at different electrode potentials and therefore detected and quantified by electroanalytical techniques. Nanometer-sized electrochemical probes are especially suitable for measuring ROS/RNS in single cells and cellular organelles. In this article, we survey recent advances in the localized measurements of ROS/RNS inside single cells and discuss several methodological issues, including optimization of nanoelectrode geometry, precise positioning of an electrochemical probe inside a cell, and interpretation of electroanalytical data.  相似文献   

19.
《中国化学快报》2020,31(7):1961-1965
Herein, we prepared novel three-dimensional (3D) gear-shaped Co3O4@C (Co3O4 modified by amorphous carbon) and sheet-like SnO2/CC (SnO2 grow on the carbon cloth) as anode and cathode to achieve efficient removal of 4-nitrophenol (4-NP) in the presence of peroxymonosulfate (PMS) and simultaneous electrocatalytic reduction of CO2, respectively. In this process, 4-NP was mineralized into CO2 by the Co3O4@C, and the generated CO2 was reduced into HCOOH by the sheet-like SnO2/CC cathode. Compared with the pure Co0.5 (Co3O4 was prepared using 0.5 g urea) with PMS (30 mg, 0.5 g/L), the degradation efficiency of 4-NP (60 mL, 10 mg/L) increased from 74.5%–85.1% in 60 min using the Co0.5 modified by amorphous carbon (Co0.5@C). Furthermore, when the voltage of 1.0 V was added in the anodic system of Co0.5@C with PMS (30 mg, 0.5 g/L), the degradation efficiency of 4-NP increased from 85.1%–99.1% when Pt was used as cathode. In the experiments of 4-NP degradation coupled with simultaneous electrocatalytic CO2 reduction, the degradation efficiency of 4-NP was 99.0% in the anodic system of Co0.5@C with addition of PMS (30 mg, 0.5 g/L), while the Faraday efficiency (FE) of HCOOH was 24.1 % at voltage of −1.3 V using the SnO2/CC as cathode. The results showed that the anode of Co3O4 modified by amorphous carbon can markedly improve the degradation efficiency of 4-NP, while the cathode of SnO2/CC can greatly improve the FE and selectivity of CO2 reduction to HCOOH and the stability of cathode. Finally, the promotion mechanism was proposed to explain the degradation of organic pollutants and reduction of CO2 into HCOOH in the process of electrocatalysis coupled with advanced oxidation processes (AOPs) and simultaneous CO2 reduction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号