首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this paper, the free vibration of magneto- electro-elastic (MEE) nanoplates is investigated based on the nonlocal theory and Kirchhoff plate theory. The MEE nanoplate is assumed as all edges simply supported rectan gular plate subjected to the biaxial force, external electric potential, external magnetic potential, and temperature rise. By using the Hamilton's principle, the governing equations and boundary conditions are derived and then solved analytically to obtain the natural frequencies of MEE nanoplates. A parametric study is presented to examine the effect of the nonlocal parameter, thermo-magneto-electro-mechanical loadings and aspect ratio on the vibration characteristics of MEE nanoplates. It is found that the natural frequency is quite sensitive to the mechanical loading, electric loading and magnetic loading, while it is insensitive to the thermal loading.  相似文献   

3.
基于修正偶应力和高阶剪切理论建立了仅含有一个尺度参数的Reddy变截面微梁的自由振动模型,研究了变截面微梁自由振动问题的尺度效应和横向剪切变形对自振频率计算的影响。基于哈密顿原理推导了动力学方程与边界条件,并采用微分求积法求解了各种边界条件下的自振频率。算例结果表明,基于偶应力理论预测的变截面微梁的自振频率均大于经典梁理论的预测结果,即捕捉到了尺度效应。另外,梁的几何尺寸与尺度参数越接近,尺度效应就越明显,而梁的长细比越小,横向剪切变形对自振频率的影响就越明显。  相似文献   

4.
Yang  Shaowu  Hao  Yuxin  Zhang  Wei  Yang  Li  Liu  Lingtao 《应用数学和力学(英文版)》2021,42(7):981-998
In this study, the first-order shear deformation theory(FSDT) is used to establish a nonlinear dynamic model for a conical shell truncated by a functionally graded graphene platelet-reinforced composite(FG-GPLRC). The vibration analyses of the FG-GPLRC truncated conical shell are presented. Considering the graphene platelets(GPLs) of the FG-GPLRC truncated conical shell with three different distribution patterns, the modified Halpin-Tsai model is used to calculate the effective Young's modulus. Hamilton's principle, the FSDT, and the von-Karman type nonlinear geometric relationships are used to derive a system of partial differential governing equations of the FG-GPLRC truncated conical shell. The Galerkin method is used to obtain the ordinary differential equations of the truncated conical shell. Then, the analytical nonlinear frequencies of the FG-GPLRC truncated conical shell are solved by the harmonic balance method. The effects of the weight fraction and distribution pattern of the GPLs, the ratio of the length to the radius as well as the ratio of the radius to the thickness of the FG-GPLRC truncated conical shell on the nonlinear natural frequency characteristics are discussed. This study culminates in the discovery of the periodic motion and chaotic motion of the FG-GPLRC truncated conical shell.  相似文献   

5.
The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by considering the shear deforma- tion and the axial, transversal, rotational, and axial-rotational coupling inertia forces on the assumption that the material properties vary arbitrarily in the thickness direction. By using the numerical shooting method to solve the eigenvalue problem of the coupled ordinary differential equations with different boundary conditions, the natural frequen- cies of the FGM Timoshenko beams are obtained numerically. In a special case of the classical beam theory, a proportional transformation between the natural frequencies of the FGM and the reference homogenous beams is obtained by using the mathematical similarity between the mathematical formulations. This formula provides a simple and useful approach to evaluate the natural frequencies of the FGM beams without dealing with the tension-bending coupling problem. Approximately, this analogous transition can also be extended to predict the frequencies of the FGM Timoshenko beams. The numerical results obtained by the shooting method and those obtained by the analogous transformation are presented to show the effects of the material gradient, the slenderness ratio, and the boundary conditions on the natural frequencies in detail.  相似文献   

6.
Based on the nonlocal theory and Mindlin plate theory, the governing equations (i.e., a system of partial differential equations (PDEs) for bending problem) of magnetoelectroelastic (MEE) nanoplates resting on the Pasternak elastic foundation are first derived by the variational principle. The polynomial particular solutions corresponding to the established model are then obtained and further employed as basis functions with the method of particular solutions (MPS) to solve the governing equations numerically. It is confirmed that for the present bending model, the new solution strategy possesses more general applicability and superior flexibility in the selection of collocation points. The effects of different boundary conditions, applied loads, and geometrical shapes on the bending properties of MEE nanoplates are evaluated by using the developed method. Some important conclusions are drawn, which should be helpful for the design and applications of electromagnetic nanoplate structures.  相似文献   

7.
In this paper, we analytically study vibration of functionally graded piezoelectric(FGP) nanoplates based on the nonlocal strain gradient theory. The top and bottom surfaces of the nanoplate are made of PZT-5 H and PZT-4, respectively. We employ Hamilton's principle and derive the governing differential equations. Then, we use Navier's solution to obtain the natural frequencies of the FGP nanoplate. In the first step, we compare our results with the obtained results for the piezoelectric nanoplates in the previous studies. In the second step, we neglect the piezoelectric effect and compare our results with those obtained for the functionally graded(FG) nanoplates. Finally, the effects of the FG power index, the nonlocal parameter, the aspect ratio, and the lengthto-thickness ratio, and the nanoplate shape on natural frequencies are investigated.  相似文献   

8.
Carbon nanocones have quite fascinating electronic and structural properties,whose axial vibration is seldom investigated in previous studies.In this paper,based ona nonlocal elasticity theory,a nonuniform rod model is applied to investigate the small-scale effect and the nonuniformeffect on axial vibration of nanocones.Using the modifiedWentzel-Brillouin-Kramers(WBK) method,an asymptoticsolution is obtained for the axial vibration of general nonuniform nanorods.Then,using similar procedure,the axial vibration of nanocones is analyzed for nonuniform parameters,mode number and nonlocal parameters.Explicit expressionsare derived for mode frequencies of clamped-clamped andclamped-free boundary conditions.It is found that axial vibration frequencies are highly overestimated by the classicalrod model because of ignorance of the effect of small lengthscale.  相似文献   

9.
Li Jun  Hua Hongxing 《Meccanica》2011,46(6):1299-1317
The dynamic stiffness matrix method is introduced to solve exactly the free vibration and buckling problems of axially loaded laminated composite beams with arbitrary lay-ups. The Poisson effect, axial force, extensional deformation, shear deformation and rotary inertia are included in the mathematical formulation. The exact dynamic stiffness matrix is derived from the analytical solutions of the governing differential equations of the composite beams based on third-order shear deformation beam theory. The application of the present method is illustrated by two numerical examples, in which the effects of axial force and boundary condition on the natural frequencies, mode shapes and buckling loads are examined. Comparison of the current results to the existing solutions in the literature demonstrates the accuracy and effectiveness of the present method.  相似文献   

10.
A global higher-order shear deformation theory is devised to obtain the governing equations of composite plates under dynamic excitation. The time-harmonic solution leads to an eigenvalue problem for the natural frequencies of plates. The eigenvalue problem for rectangular plates is converted to a set of homogenous algebraic equations using differential quadrature method. The formulation of the problem allows direct application of various boundary conditions. Therefore, rectangular plates with mixed boundary conditions are also considered. To show the validity of results, the fundamental natural frequencies of composite plates with different boundary conditions and those of isotropic plates with mixed boundary conditions are compared against the results available in the literature.  相似文献   

11.
Awrejcewicz  Jan  Kudra  Grzegorz  Mazur  Olga 《Nonlinear dynamics》2021,104(4):3425-3444
Nonlinear Dynamics - In this paper vibrations of the isotropic micro/nanoplates subjected to transverse and in-plane excitation are investigated. The governing equations of the problem are based on...  相似文献   

12.
In this paper, vibration analysis of functionally graded porous beams is carried out using the third-order shear deformation theory. The beams have uniform and non-uniform porosity distributions across their thickness and both ends are supported by rotational and translational springs. The material properties of the beams such as elastic moduli and mass density can be related to the porosity and mass coefficient utilizing the typical mechanical features of open-cell metal foams. The Chebyshev collocation method is applied to solve the governing equations derived from Hamilton’s principle, which is used in order to obtain the accurate natural frequencies for the vibration problem of beams with various general and elastic boundary conditions. Based on the numerical experiments, it is revealed that the natural frequencies of the beams with asymmetric and non-uniform porosity distributions are higher than those of other beams with uniform and symmetric porosity distributions.  相似文献   

13.
This paper presents an efficient shear deformation theory for vibration of functionally graded plates. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded plate are assumed to vary according to a power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton??s principle. Analytical solutions of natural frequency are obtained for simply supported plates. The accuracy of the present solutions is verified by comparing the obtained results with those predicted by classical theory, first-order shear deformation theory, and higher-order shear deformation theory. It can be concluded that the present theory is not only accurate but also simple in predicting the natural frequencies of functionally graded plates.  相似文献   

14.
The elastic buckling behavior of quadrilateral single-layered graphene sheets (SLGS) under bi-axial compression is studied employing nonlocal continuum mechanics. Small-scale effects are taken into consideration. The principle of virtual work is employed to derive the governing equations. The Galerkin method in conjunction with the natural coordinates of the nanoplate is used as a basis for the analysis. The buckling load of skew, rhombic, trapezoidal, and rectangular nanoplates considering various geometrical parameters are obtained. It is shown that nonlocal effects are very important in arbitrary quadrilateral graphene sheets and their inclusion results in smaller buckling loads. Also the effects of geometrical parameters such as aspect ratio, angle, and mode number on the buckling load decrease when scale coefficient increases, for all arbitrary quadrilateral SLGS.  相似文献   

15.
The first-order shear deformation moderate rotation shell theory of Schmidt and Reddy [R. Schmidt and J. N. Reddy, J. Appl. Mech. 55, 611–617 (1988)] is used as a basis for the development of finite element models for the analysis of the static, geometrically non-linear response of anisotropic and laminated structures. The incremental, total Lagrangian formulation of the theory is developed, and numerical solutions are obtained by using the isoparametric Lagrangian 9-node and Serendipity 8-node shell finite elements. Various integration schemes (full, selective reduced, and uniformly reduced integration) are applied in order to detect and to overcome the effects of shear and membrane locking on the predicted structural response. A number of sample problems of isotropic, orthotropic, and multi-layered structures are presented to show the accuracy of the present theory. The von Kármán-type first-order shear deformation shell theory and continuum 2D theory are used for comparative analyses.  相似文献   

16.
An approximate analysis for free vibration of a laminated curved panel (shell) with four edges simply supported (SS2), is presented in this paper. The transverse shear deformation is considered by using a higher-order shear deformation theory. For solving the highly coupled partial differential governing equations and associated boundary conditions, a set of solution functions in the form of double trigonometric Fourier series, which are required to satisfy the geometry part of the considered boundary conditions, is assumed in advance. By applying the Galerkin procedure both to the governing equations and to the natural boundary conditions not satisfied by the assumed solution functions, an approximate solution, capable of providing a reliable prediction for the global response of the panel, is obtained. Numerical results of antisymmetric angle-ply as well as symmetric cross-ply and angle-ply laminated curved panels are presented and discussed.  相似文献   

17.
Nonlinear vibrations of viscoelastic orthotropic and isotropic shells are mathematically modeled using a geometrically nonlinear Timoshenko theory. Nonlinear problems are solved by using the Bubnov-Galerkin method and a numerical method based on quadrature formulas. Results obtained from different theories are compared and analyzed. For each problem, the Bubnov-Galerkin method is tested for convergence. The influence of the viscoelasticity and inhomogeneity of materials on the vibrations of plates is demonstrated __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 5, pp. 120–131, May 2006.  相似文献   

18.
A nonlocal study of the vibration responses of functionally graded (FG) beams supported by a viscoelastic Winkler-Pasternak foundation is presented. The damping responses of both the Winkler and Pasternak layers of the foundation are considered in the formulation, which were not considered in most literature on this subject, and the bending deformation of the beams and the elastic and damping responses of the foundation as nonlocal by uniting the equivalently differential formulation of well-posed strain-driven (ε-D) and stress-driven (σ-D) two-phase local/nonlocal integral models with constitutive constraints are comprehensively considered, which can address both the stiffness softening and toughing effects due to scale reduction. The generalized differential quadrature method (GDQM) is used to solve the complex eigenvalue problem. After verifying the solution procedure, a series of benchmark results for the vibration frequency of different bounded FG beams supported by the foundation are obtained. Subsequently, the effects of the nonlocality of the foundation on the undamped/damping vibration frequency of the beams are examined.  相似文献   

19.
Song Xiang  Gui-wen Kang  Bin Xing 《Meccanica》2012,47(8):1913-1921
In the present paper, a nth-order shear deformation theory is used to perform the free vibration analysis of the isotropic plates. The present nth-order shear deformation theory satisfies the zero transverse shear stress boundary conditions on the top and bottom surface of the plate. Reddy??s third order theory can be considered as a special case of present nth-order theory (n=3). The governing equations and boundary conditions are derived by the principle of virtual work. The governing differential equations of the isotropic plates are solved by the meshless radial point collocation method based on the thin plate spline radial basis function. The effectiveness of the present theory is demonstrated by applying it to free vibration problem of the square and circular isotropic plate.  相似文献   

20.
A finite element model based on sinusoidal shear deformation theory is developed to study vibration and buckling analysis of composite beams with arbitrary lay-ups. This theory satisfies the zero traction boundary conditions on the top and bottom surfaces of beam without using shear correction factors. Besides, it has strong similarity with Euler–Bernoulli beam theory in some aspects such as governing equations, boundary conditions, and stress resultant expressions. By using Hamilton’s principle, governing equations of motion are derived. A displacement-based one-dimensional finite element model is developed to solve the problem. Numerical results for cross-ply and angle-ply composite beams are obtained as special cases and are compared with other solutions available in the literature. A variety of parametric studies are conducted to demonstrate the effect of fiber orientation and modulus ratio on the natural frequencies, critical buckling loads, and load-frequency curves as well as corresponding mode shapes of composite beams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号