首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A relatively noninvasive method consisting of a face mask sampling device, solid-phase microextraction (SPME) fibers, and a gas chromatography-mass spectrometry (GC-MS) for the identification of volatile organic compounds (VOCs) in bovine breath was developed. Breath of three morbid steers with respiratory tract infections and three healthy steers were sampled seven times in 19 days for 15 min at each sampling. The breath VOCs adsorbed on the divinylbenzene (DVB)-Carboxen-polydimethyl siloxane (PDMS) 50/30 microm SPME fibers were transported to a laboratory GC-MS system for separation and identification with an in-house spectral library of standard chemicals. A total of 21 VOCs were detected, many of them for the first time in cattle breath. Statistical analyses using Chi-square test on the frequency of detection of each VOC in each group was performed. The presence of acetaldehyde (P < or = 0.05) and decanal (P < or = 0.10) were associated more with clinically morbid steers while methyl acetate, heptane, octanal, 2,3-butadione, hexanoic acid, and phenol were associated with healthy steers at P < or = 0.10. The results suggest that noninvasive heath screening using breath analyses could become a useful diagnostic tool for animals and humans.  相似文献   

2.
An injection method for a large amount of headspace gas which enables determination of trace amounts of very volatile organic compounds (VVOCs), dichlorodifluoromethane, chloromethane, vinyl chloride, bromomethane, chloroethane and trichlorofluoromethane in all kinds of environmental water was developed. A gas phase equilibrated with the water phase in a vial was purged with helium for a short time. The VVOCs were then introduced into a trapping tube packed with Tenax TA, which had been cooled using carbon dioxide. After trapping, the VVOCs were thermally desorbed and put into a GC–MS system for subsequent analysis. This method is applicable to various types of samples.  相似文献   

3.
Comprehensive two‐dimensional gas chromatography is a technique that is becoming more widespread within the analytical community, especially in the separation of complex mixtures. Modulation in comprehensive two‐dimensional gas chromatography can be achieved by manipulating temperature or flow and offers many advantages such as increased separation power, but one underutilized advantage is increased detectability due to the reduction of peak width from the use of a modulator. A flow modulator was used to selectively target analytes for increased detectability with a standard flame ionization detector operated at 100 Hz, without the need for cryogens or advanced modulation software. By the collection of the entire peak volume followed by peak transfer rather than further separation, an increase of 12 times in peak height and detectability was realized for the analytes tested using an internal loop modulator configuration. An external loop flow modulator configuration allowed for more volatile analytes (with k < 5), and demonstrated an analyte detectability enhancement factor of at least 6. The collection loop size can be readily increased with an external loop configuration to accommodate for these naturally broader peaks. This novel flow modulated targeted signal enhancement approach was applied to industrially significant analyses like the analysis of methanol in a hydrocarbon streams. Methanol was detected at 7 ppb with a conventional flame ionization detector and without the need for pre‐concentration.  相似文献   

4.
Standard gases are used for quality control and quality assurance, development of analysis methods and novel air sampling devices. The use of solid-phase microextraction (SPME) and other novel technologies for research in the area of air sampling and analysis requires systems/devices for reliable standard gas generation and sampling. In this paper we describe a new gas standard generating system for volatile organic compounds (VOCs) and semi-VOCs that was designed, built, and tested to facilitate fundamental and applications research with SPME. The system provided for the generation of a wide range of VOC/semi-VOC concentrations and mixing various standard gases, estimation of detection limits, testing the effects of sampling time, air temperature and relative humidity, testing the effects of air velocity and ozone on sampling/extractions. The system can be also used for calibrations of analytical instrumentation, quality control and quality assurance checks, and cross-validations of SPME with/and other sampling techniques.  相似文献   

5.
6.
Song K  Ahn B  Jung E  Lee YI  Ko S 《Analytica chimica acta》2007,583(1):210-215
Photoionization detector (PID) was developed for a sensitive on-site detection of trace amounts of volatile organic compounds (VOCs) based on an annular type ion collection electrode assembly. An ion collector with an annular geometry could detect more stable ion signals in the PID system when compared to the other types of ion collectors when an UV lamp of 10.6 eV was used as an ionization source. In order to enhance the detection sensitivity, a pre-concentration system, which was developed by adopting a ceramic heater packed with rod shaped molecular sieves, was adopted for a detection of VOCs. The adopted ceramic heaters had a resistance of 10-20 Ohm, and the temperature of the heater was optimized by controlling the heating time of the resistor. The enhancement of the detection sensitivity was found to be 8-10 times with the PID system when compared to the signals measured without a pre-concentrator. The overall detection sensitivity of the developed PID system was estimated as 10 ppb or better.  相似文献   

7.
A sensor array system consisting of five quartz crystal microbalance (QCM) sensors (four for measuring and one for reference) and an artificial neural network (ANN) method is presented for on-line detection of volatile organic compounds. Three ionic liquids, 1-butyl-3-methylimidazolium chloride (C4mimCl), 1-butyl-3-methylimidazolium hexafluorophosphate (C4mimPF6), 1-dedocyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C4mimNTf2), and silicone oil II, which is widely used as gas chromatographic stationary phase, have been selected as sensitive coatings on the quartz surface allowing the sensor array effective to identify chemical vapors, such as toluene, ethanol, acetone and dichloromethane. The success rate for the qualitative recognition reached 100%. Quantitative analysis has also been investigated, within the concentration range of 0.6-6.1 mg/L for toluene, 0.9-7.5 mg/L for ethanol, 2.8-117 mg/L for dichloromethane, and 0.7-38 mg/L for acetone, with a prediction error lower than 8%.  相似文献   

8.
In this communication, I describe the challenges in quantitative analyses for volatile organic compounds in mouse urine, which are primarily caused by the presence of the major urinary proteins, a lipocalin subfamily, that sequester volatile ligands. The analyses of volatile compounds in mouse urine have been performed since the late 1970s. However, none of them considered the binding interactions of the quantified compounds with the urinary proteins. Some volatile ligands are tightly bound to the proteins and may not be extracted completely by organic solvents. The amounts of volatile ligands measured by external standard calibration represent those of the unbound ligands in the headspace, not the total amounts in urine. Addition of internal standards displaces ligands bound to the proteins, resulting in a completely different volatile profile. Normalization of volatile compounds using relative peak area (or height) ratios may not be used in the conditions where displacement of ligands bound to the proteins occurs. Because of the unique chemical properties of mouse urine, I have not been able to find a good quantification method for the volatile compounds released from mouse urine. I hope that the identification of these issues will stimulate others to come up with novel approaches.  相似文献   

9.
The functionalization of porous metal–organic frameworks (Cu3(BTC)2) was achieved by incorporating Keggin-type polyoxometalates (POMs), and further optimized via alkali metal ion-exchange. In addition to thermal gravimetric analysis, IR, single-crystal X-ray diffraction, and powder X-ray diffraction, the adsorption properties were characterized by N2 and volatile organic compounds (VOCs) adsorption measurements, including short-chain alcohols (C<4), cyclohexane, benzene, and toluene. The adsorption enthalpies estimated by the modified Clausius–Clapeyron equation provided insight into the impact of POMs and alkali metal cations on the adsorption of VOCs. The introduction of POMs not only improved the stability, but also brought the increase of adsorption capacity by strengthening the interaction with gas molecules. Furthermore, the exchanged alkali metal cations acted as active sites to interact with adsorbates and enhanced the adsorption of VOCs.  相似文献   

10.
P. Popp  A. Paschke 《Chromatographia》1997,46(7-8):419-424
Summary A new 80 μm Carboxen-polydimethylsiloxane (PDMS) fiber for solid phase microextraction (SPME) was tested for the enrichment of volatile organic compounds from water and air. Detection limits between 13 ng L−1 (CH2Cl2) and 0.1 ng L−1 (CHCl2Br and CHClBr2) for the combination: Carboxen-PDMS fiber and GC-ECD and between 35 ng L−1 and 45 ng L−1 (BTEX compounds) for the combination: Carboxen-PDMS and GC-FID using the headspace procedure were determined. Comparisons with the 100 μm PDMS fiber and further coatings show the advantages of the Carboxen-PDMS fiber with respect to extraction efficiency. Disadvantages of the new fiber compared with the 100 μm PDMS fiber are poorer repeatability and prolongation of equilibrium time. Distribution coefficients of the BTEX compounds between aqueous solution and SPME fiber coating were calculated and compared with the results of other researchers and with octanol-water partition coefficients.  相似文献   

11.
Alvarado JS  Rose C 《Talanta》2004,62(1):17-23
Traditional methodologies for the characterization of volatile organic compounds (VOCs) in subsurface soil are expensive, time-consuming processes that are often conducted on samples collected at random. The determination of VOCs in near-surface soils and vegetation is the foundation for a more efficient sampling strategy to characterize subsurface soil and improve understanding of environmental problems.In the absence of a standard methodology for the determination of VOCs in vegetation and in view of the high detection limits of the method for soils, we developed a methodology using headspace gas chromatography with an electron capture detector for the determination of low levels (parts-per-billion to parts-per-trillion) of VOCs in soils and vegetation. The technique demonstrates good sensitivity, good recoveries of internal standards and surrogate compounds, good performance, and minimal waste. A case study involving application of this technique as a first-step vadose-zone characterization methodology is presented.  相似文献   

12.
A method has been developed for the automated determination of C5 C10 and C2 C6 volatile organic compounds in urban and rural air, using programmed temperature vaporization injection from a sorbent tube trap. A single activated charcoal sorbent tube was repeatedly used to collect samples of air with trapped VOCs being subsequently desorbed onto either a wide bore dimethyl polysiloxane (C5 C10) or porous layer open tubular (C2 C6) gas chromatography column without use of intermediate cryogenic refocussing. The high flow rates of helium used during the analysis resulted in the sample tube being cleaned and ready to reuse following the analytical separation. Examples of analysis of aromatic VOCs in urban air, and biogenic emissions in rural air, collected in a Sitka Spruce forest are presented. Using this method it is possible to quasi-continuously monitor concentrations of VOCs in locations where high sensitivity in situ analysis is required, but where cryogenic coolants may not be readily available or desirable.  相似文献   

13.
Methods for the isolation and/or concentration of volatile organic compounds from water samples for trace organic analysis by gas chromatography are reviewed. The following basic groups of methods are discussed: liquid-liquid extraction, adsorption on solid sorbents, extraction with gas (gas stripping and static and dynamic headspace techniques) and membrane processes. The theoretical bases of these methods are discussed. Experimental arrangements for the isolation and/or concentration of volatile compounds from water are presented and discussed with respect to their efficiency. The applicability of the described methods to the isolation and/or concentration of various organic compounds from waters of various origins is discussed.  相似文献   

14.
An automatic calibration apparatus for the dynamic generation of organic vapours was developed. The accurately controlled stream of nitrogen was drawn at a low flow-rate through a thermostated container filled with the standard substance, thus generating a continuous stream of saturated vapour of the compound. The compound holder vessel was thermostated at −16°C. A large stream of pure carrier gas was mixed with a low stream of substance in a mixing chamber for dilution. The fittings were manufactured from PTFE, and tubes were made of special PTFE with an inert inner surface to eliminate the wall adsorption and to decrease the cross-diffusion. Moisture interferences were reduced using a Nafion membrane filter. The vapour generator was validated by diffusive sampling and gas chromatographic methods. Standard mixtures have been prepared containing toluene at concentrations ranging from 3 to 3000 ppm. The combined uncertainty of preparative and analytical error components associated with the concentration of the analytes at the 95% confidence level typically ranges from 2 to 5% relative, depending upon the concentration. The measured and the calculated values were compared and good correlation (r2>0.99) was found.  相似文献   

15.
建立了顶空固相微萃取(HSSPME)-气相色谱(GC)-质谱(MS)联用测定纺织品中甲苯、4-乙烯基环己烯、苯乙烯、萘和1-苯基环己烯5种挥发性有机物(VOCs)的分析方法。选择聚二甲基硅氧烷(PDMS)作为萃取涂层,优化了SPME的萃取条件,包括平衡时间、萃取时间、萃取温度、顶空体积、离子强度、搅拌速度、解吸温度和时间以及GC—MS仪器条件。对于甲苯、4-乙烯基环己烯、苯乙烯、萘和1-苯基环己烯方法线性范围分别为0.087~870、3.32~3320、2.28~2280、0.015~150和0.050~50.0ng/g;检出限分别为0.005、0.042、0.670、0.008和0.011ng/g。实际样品加标回收率在80.1%~122%之间,RSD在0.8%~8.6%之间。方法符合纺织品中痕量VOCs的快速分析要求。  相似文献   

16.
Volatile organic compounds were collected and analyzed from a variety of indoor and outdoor air samples to test whether human‐derived compounds can be readily detected in the air and if they can be associated with human occupancy or presence. Compounds were captured with thermal desorption tubes and then analyzed by gas chromatography with mass spectrometry. Isoprene, a major volatile organic compound in exhaled breath, was shown to be the best indicator of human presence. Acetone, another major breath‐borne compound, was higher in unoccupied or minimally occupied areas than in human‐occupied areas, indicating that its majority may be derived from exogenous sources. The association of endogenous skin‐derived compounds with human occupancy was not significant. In contrast, numerous compounds that are found in foods and consumer products were detected at elevated levels in the occupied areas. Our results revealed that isoprene and many exogenous volatile organic compounds consumed by humans are emitted at levels sufficient for detection in the air, which may be indicative of human presence.  相似文献   

17.
In this study, a sorbent was immobilized inside a needle resulting in the development of a needle trap (NT) device. This device was applied to extract organic components from gaseous samples and to introduce an enriched mixture into a conventional gas chromatography (GC) injector. Construction of this simple and integrated sampling/extraction/sample introduction device was optimized by considering different ways to immobilize a sorbent in the needle, packing single and multiple-layer sorbent beds, and applying different desorption strategies into the GC injector. A carrier gas system was modified to minimize the carryover for the needle trap with a sealed tip (NT-1), and a narrow-neckliner was used for the blunt-tip needle trap (NT-2). Breakthrough in the device was investigated by connecting two NT-2 devices in series. The needle trap performed very well as an exhaustive spot sampler, as well as in a time-weighted average (TWA) operation. The linear velocity of the mobile phase has no influence on the sampling rate of the needle trap. Validation results against the standard NIOSH 1501 method using charcoal tubes for indoor air surveys demonstrated good accuracy for the NT approach. The reproducibility of the NT-2 was about 1% for benzene. The detection limits for FID detection and for 25 ml gas sample were 0.23 ng/l, 2.10 ng/l and 1.12 ng/l for benzene, ethylbenzene and o-xylene, respectively.  相似文献   

18.
In contrast to common glassy polymers, poly(1-trimethylsilyl-1-propyne) (PTMSP), a high free volume glassy polymer, shows a preferable permeation of large condensable organic vapors in comparison to permanent gases. In order to investigate this phenomenon, a systematic permeability study over a large activity range has been performed on PTMSP with three types of volatile organic compounds (VOCs) as diffusing probes: toluene, dimethylketone and dichloromethane. PTMSP was synthesized with different catalytic systems (Nb or Ta based) able to induce controlled sub-molecular cistrans structures. Whereas dimethylketone and dichloromethane permeability can be correctly described by a classical dual-mode equation, a peculiar bell shaped pattern was obtained for toluene, with a minimum permeability located at an activity value around a=0.3–0.4. In that case, only a dual-mode expression taking into account a concentration dependent diffusion coefficient can account for the results.

On the other hand some apparent conflicting data recorded from PTMSP brand new films were related to the microstructure of the polymer main chain thanks to 13C NMR spectroscopy analysis showing importance of cis- and trans-forms of the main chain of PTMSP. cis-Structure is more flexible and can be responsible for the creation of a higher density physical network (HDN) in polymeric matrix; conversely, trans-structure is more rigid and can provide lower density physical network (LDN). The higher permeability recorded for several probes through PTMSP synthesized with TaCl5/Al(i-Bu)3 catalytic system compared to those of NbCl5 based polymer can be explained by the geometric difference of the macromolecule networks.  相似文献   


19.
An analytical methodology based on the use of a polyethylene layflat tube filled with activated carbon and Florisil (ACFL-VERAM) was employed for the passive sampling of volatile organic compounds (VOCs) in the air of working areas of packing industries. VOCs amount in the ACFL-VERAM sampler was directly determined through head-space-gas chromatography-mass spectrometry (HS-GC-MS) allowing a direct determination in only 20 min without the need of any previous treatment. Uptake parameters, like sampling rate (RS) and sampler-air partition coefficient (KSA), were determined for every studied VOC from adsorption isotherm data. Additionally, experimental equations have been proposed to predict RS and KSA from the octanol-air partition coefficients reported in the literature. The proposed methodology reaches method detection levels from 0.007 to 0.2 mg m−3 for the studied VOCs.  相似文献   

20.
The resolving power of a multi-capillary column (MCC) was evaluated using 14 mixtures of volatile organic compounds with known composition and complexity which was incremented stepwise up to 129 constituents. The number of constituents in these mixtures versus the number of components separated and detected with a flame ionization detector showed a proportional rise, with a decreasing slope, to 76 peaks after which a plateau was reached. This was improved 23.7% to 94 constituents, or 73% of all compounds in the mixture, after simplex optimization of carrier gas linear velocity, initial temperature and program rate. When the detection method was differential mobility spectrometry (DMS), additional selectivity was introduced through ion formation and separation. Fifty nine compounds were detected by DMS and 46 were separated by retention time; 13 were co-eluted and 7 of these were resolved by differential ion mobility (90% of all components ionized). A correlation of −0.412 between retention time for gas chromatography (GC) and differential mobility for DMS suggested a significant level of orthogonal character and the method of GC–DMS should not be seen as sequential only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号