首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As the energy density of state-of-the-art lithium (Li)-ion batteries (LIBs) increases, the safety concern of LIBs using liquid electrolytes is drawing increasing attention. Flammability of electrolytes is a critical link of the overall safety performance of LIBs and Li metal batteries. For this reason, intensive efforts have been devoted to suppressing the flammability of liquid electrolytes. In this short review, the common approaches to reduce the flammability of the nonaqueous liquid electrolytes will be summarized. The advantages and limitations of these approaches will also be discussed.  相似文献   

2.
Li metal batteries are revived as the next-generation batteries beyond Li-ion batteries. The Li metal anode can be paired with intercalation-type cathodes LiMO2 and conversion-type cathodes such as sulfur and oxygen. Then, energy densities of Li/LiMO2 and Li/S,O2 batteries can reach 400 Whkg?1 and more than 500 Whkg?1, respectively, which surpass that of the state-of-the-art LIB (280 Whkg?1). However, replacing the intercalation-type graphite anode with the Li metal anode suffers from low coulombic efficiency during repeated Li plating/stripping processes, which leads to short cycle lifetime and potential safety problems. The key solution is to construct a stable and uniform solid electrolyte interphase with high Li+ transport and high elastic strength on the Li metal anode. This review summarizes recent progress in improving the solid electrolyte interphase by tailoring liquid electrolytes, a classical but the most convenient and cost-effective strategy.  相似文献   

3.
Hydrous electrolytes with high electrochemical potentials were obtained by hydrating water molecules into solutes to form high Li:water molar ratio electrolytes(HMRE).Solid polyethylene glycol(PEG) were e mployed to enha nce the molar ratio of Li+to water in the electrolytes while reducing the consumption of Li-salt.The obtained mole ratio of Li~+ to wa ter molecules in the hydrous electrolytes was greater than 1:1;however,the mass fraction of Li-salt was reduced to 61%(approximately 5.5 mol/kg,based on water and PEG).Compared with that of water-in-salt electrolytes,the mass fraction of Li-salt could be remarkably reduced by adding solid PEG.The electrochemical stability of the electrolytes improved considerably because of the strong hydration of Li~+ by the water molecules.A beneficial passivation effect,arising from the decomposition of the electrolyte,at a wide potential window was observed.  相似文献   

4.
Ion‐conducting block copolymers (BCPs) have attracted significant interest as conducting materials in solid‐state lithium batteries. BCP self‐assembly offers promise for designing ordered materials with nanoscale domains. Such nanostructures provide a facile method for introducing sufficient mechanical stability into polymer electrolyte membranes, while maintaining the ionic conductivity at levels similar to corresponding solvent‐free homopolymer electrolytes. This ability to simultaneously control conductivity and mechanical integrity provides opportunities for the fabrication of sturdy, yet easily processable, solid‐state lithium batteries. In this review, we first introduce several fundamental studies of ion conduction in homopolymers for the understanding of ion transport in the conducting domain of BCP systems. Then, we summarize recent experimental studies of BCP electrolytes with respect to the effects of salt‐doping and morphology on ionic conductivity. Finally, we present some remaining challenges for BCP electrolytes and highlight several important areas for future research. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1–16  相似文献   

5.
If were not by their low electrochemical stability, aqueous electrolytes would be the preferred alternative to be used in electrochemical energy storage devices. Their abundance and nontoxicity are key factors for such application, especially in large scale. The development of highly concentrated aqueous electrolytes, so-called water-in-salt electrolytes, has expanded the electrochemical window of aqueous electrolyte up to 3.0 V (whereas salt-in-water electrolytes normally shows up to 1.6 V), showing that water can be an alternative after all. Many devices, ranging from metal-ion batteries to electrochemical capacitors, have been reported recently, making use of such wider electrochemical stability and enhancing devices energy density. Different salts have also been proposed not only to gain in costs but also to improve physicochemical properties.  相似文献   

6.
An overview is presented on the development of improved polymer based electrolytes during the past years. The emphasis lies on new approaches regarding chemical concepts that achieve a higher total conductivity and lithium transference number as well as an increased electrochemical, mechanical and thermal stability. With respect to the polymer chemistry, the focus is laid on siloxane and phosphazene derived systems. Topics are the chemical modification of the polymeric, cyclic and low molecular derivates of these systems, the formation of stable membranes from these by suitable cross-linking strategies and an extensive electrochemical characterization in corresponding lithium cells. Recent trends towards composite and hybrid materials are illustrated with examples and newly developed hybrid electrolytes. A particular chance for improvements comes from the design and use of stable small molecular additives in combination with optimized and electrochemically stable polymer networks. Special compounds are introduced which may act themselves as novel solvents with increased electrochemical stabilities. The relevance of chosen lithium salts for polymer electrolytes is discussed, too, and a new family of pyrazolide anions is introduced. In all cases, the electrochemical performance has been characterized by standard experimental techniques.  相似文献   

7.
Owing to their improved mechanical properties and good polymer miscibility, the blend gel polymer electrolytes of poly (vinylidene fluoride) (PVdF)-poly(ethyl methacrylate) (PEMA) have been prepared using solvent casting technique and characterized for their electrochemical performances. The electrolyte shows a maximum ionic conductivity of 1.5 × 10−4 S cm−1 at 301 K for the 90:10 blend ratio of PVdF:PEMA system with good transport property. The ionic conductivity is enhanced, in accompany with improved microstructural homogeneity, at low PEMA contents, while the decreased conductivity at high contents has been attributed to increasing crystalline PEMA domains. With the optimum PVdF:PEMA ratio, the complex system was found to facile reasonable ionic transference number and exhibit superior interfacial stability with Li electrode.  相似文献   

8.
锂离子电池(lithiumionbatteries,LIBs)在储能领域已取得了巨大的成功.然而,商用LIBs含有高挥发性易燃有机电解液,使其存在严重的安全隐患.固态聚合物电解质具有解决相应安全性问题的潜力,有望成为下一代高安全性全固态LIBs的电解质材料.然而,固态聚合物电解质存在离子电导率不高等问题,限制了其在固态LIBs中的实际应用.研究者们为了提高该类电解质的离子电导率、锂离子迁移数等综合电化学性能,已在寻找新锂盐、对聚合物进行改性以及向聚合物电解质中添加填料等方面进行了较多的研究.本文简要概述了固态聚合物电解质的锂离子传导机理以及在提高固态聚合物电解质综合电化学性能方面的研究进展.  相似文献   

9.
Significant safety problems and poor cyclic stability of conventional lithium-ion batteries, which based on organic liquid electrolytes, hinder their practical application, while all-solid-state batteries (ASSBs) are considered the most promising candidates to replace traditional lithium-ion batteries. As a critical component of ASSBs, solid-state electrolytes play an essential role in ion transport properties and stability. At present, the solid garnet electrolyte is considered as one of the most promising electrolytes because of its excellent performance. However, it still faces many challenges in ionic conductivity, air stability, electrode/electrolyte interface, and lithium dendrites. Therefore, this review is concerned about the up-to-date progress and challenges which will greatly influence the large-scale application of solid garnet electrolytes. Firstly, various ways to improve the ionic conductivity of solid garnet electrolytes are comprehensively summarized. Then, the stability of solid garnet electrolytes in the air is carefully discussed. Secondly, the latest progress in interface engineering between anode/cathode and solid garnet electrolytes treated by different methods is reported. The formation mechanism and influencing factors of lithium dendrites in the solid garnet electrolyte are systematically focused on. Finally, the development and innovation of composite solid garnet electrolytes and 3D garnet electrolytes are summarized in detail. Some important characterization techniques for studying the aforementioned problems are also summarized. Based on the current development of solid garnet electrolytes and solid-state batteries, further challenges and perspectives are presented.  相似文献   

10.
《中国化学快报》2021,32(9):2659-2678
In comparison with lithium-ion batteries (LIBs) with liquid electrolytes, all-solid-state lithium batteries (ASSLBs) have been considered as promising systems for future energy storage due to their safety and high energy density. As the pivotal component used in ASSLBs, composite solid polymer electrolytes (CSPEs), derived from the incorporation of inorganic fillers into solid polymer electrolytes (SPEs), exhibit higher ionic conductivity, better mechanical strength, and superior thermal/electrochemical stability compared to the single-component SPEs, which can significantly promote the electrochemical performance of ASSLBs. Herein, the recent advances of CSPEs applied in ASSLBs are presented. The effects of the category, morphology and concentration of inorganic fillers on the ionic conductivity, mechanical strength, electrochemical window, interfacial stability and possible Li+ transfer mechanism of CSPEs will be systematically discussed. Finally, the challenges and perspectives are proposed for the future development of high-performance CSPEs and ASSLBs.  相似文献   

11.
The composite polymer electrolyte (CPE) membranes, comprising of poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP), aluminum oxyhydroxide, (AlO[OH]n) of two different particle sizes 7 μm/14 nm and LiN(CF3SO2)2 as lithium salt were prepared using solution casting technique. The prepared membranes were subjected to XRD, impedance spectroscopy, compatibility and transport number studies. The incorporation of nanofiller greatly enhanced the ionic conductivity and the compatibility of the composite polymer electrolyte. Also LiCr0.01Mn1.99O4/CPE/Li cells were assembled and their charge-discharge profiles have been made at 70 °C. The film which possesses nanosized filler offered better electrochemical properties than those with micron sized filler. The results are discussed based on Lewis acid-base theory.  相似文献   

12.
A novel polymer matrix with a polar carbonyl group was designed and used to prepare an all‐solid polymer electrolyte in lithium rechargeable batteries. The ionic conductivity of this type of polymer electrolyte was examined. The relationship between the lithium salt concentration and ionic conductivity was investigated by Fourier transform infrared (FTIR) spectroscopy. The carbonyl groups in the polymer matrix effectively interacted with the lithium salt, which improved the ionic conductivity at a large range of temperatures. The ionic conductivity of this type of polymer electrolyte was approximately 10?4 S cm?1 at room temperature. The stability of the interface between electrode and electrolyte was evaluated by measuring the alternating current (AC) impedance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Lithium-ion batteries (LIBs) are widely used in cellphones, laptops, and electric cars owing to their high energy density and long operational lifetime. However, their further deployment in large-scale energy storage systems is restricted by the uneven distribution of lithium resources (~0.0017% (mass fraction, w) in the Earth's crust). Therefore, alternative energy storage systems composed of abundant elements are of urgent need. Recently, sodium-ion batteries (SIBs) have attracted significant attention and are considered to be a potential alternative for next-generation batteries owing to abundant sodium resources (~2.64% (w) of the Earth's crust), suitable potential (−2.71 V), and low cost. SIBs are similar to LIBs in terms of their physical and electrochemical properties. Previous studies have mainly focused on SIB storage materials, including hard carbon, alloys, and hexacyanoferrate, while the safety of SIBs remains largely unexplored. Similar to LIBs, the current electrolytes used in SIBs are mainly composed of flammable organic carbonate solvents (or ether solvents), sodium salts, and functional additives, which pose possible safety issues. Moreover, the chemical activity of sodium is much higher than that of lithium, leading to a higher risk of fire, thermal runaway, and explosion. To overcome this problem, herein we propose a fluorinated non-flammable electrolyte composed of 0.9 mol∙L−1 NaPF6 (sodium hexafluorophosphate) in an intermixture of di-(2, 2, 2 trifluoroethyl) carbonate (TFEC) and fluoroethylene carbonate (FEC) in a 7 : 3 ratio by volume. Its physical and electrochemical properties were studied by ionic conductivity, direct ignition, cyclic voltammetry, and charge/discharge measurements, demonstrating excellent flame-retarding ability and outstanding compatibility with sodium electrodes. The electrochemical tests showed that the Prussian blue cathode retained a capacity of 84 mAh∙g−1 over 50 cycles in the prepared electrolyte, in contrast to the rapid capacity degradation in a flammable conventional carbonate electrolyte (74 mAh∙g−1 with 57% capacity retention after 50 cycles). To test the practical application of the proposed electrolyte, a hard carbon anode was used and exhibited exceptional performance in this system. The enhancement mechanism was further verified by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning emission microscopy (SEM) investigations. Polycarbonate on the surface of the cathode played an important role for the studied electrolyte system. The polycarbonate may originate from FEC decomposition, which can enhance the ionic conductivity of the solid electrolyte interface (SEI) layer and reduce impedance. Hence, we believe that this proposed electrolyte may provide new opportunities for the design of robust and safe SIBs for next-generation applications.  相似文献   

14.
Sulfone-based electrolytes have been investigated as electrolytes for lithium-ion cells using high-voltage positive electrodes, such as LiMn2O4 and LiNi0.5Mn1.5O4 spinels, and Li4Ti5O12 spinel as negative electrode. In the presence of imide salt (LiTFSI) and ethyl methyl sulfone or tetramethyl sulfone (TMS) electrolytes, the Li4Ti5O12/LiMn2O4 cell exhibited a specific capacity of 80 mAh g?1 with an excellent capacity retention after 100 cycles. In a cell with high-voltage LiNi0.5Mn1.5O4 positive electrode and 1 M LiPF6 in TMS as electrolyte, the capacity reached 110 mAh g?1 at the C/12 rate. When TMS was blended with ethyl methyl carbonate, the Li4Ti5O12/LiNi0.5Mn1.5O4 cell delivered an initial capacity of 80 mAh g?1 and cycled fairly well for 1000 cycles under 2C rate. The exceptional electrochemical stability of the sulfone electrolytes and their compatibility with the Li4Ti5O12 safer and stable anode were the main reason behind the outstanding electrochemical performance observed with high-potential spinel cathode materials. These electrolytes could be promising alternative electrolytes for high-energy density battery applications such as plug-in hybrid and electric vehicles that require a long cycle life.  相似文献   

15.
We systematically investigated thermal effects of organic electrolytes/organic solvents with fully charged cathodic materials (Li0.5CoO2) of Li-ion battery under rupture conditions by using oxygen bomb calorimeter. In the six studied systems, both the amount of combustion heat and heat release rates showed a pronounced increase with the increase in mass ratios of cathodic materials to electrolytes/solvents. More importantly, synergistic effects not simply physical mixtures have firstly been observed between cathodic materials and electrolytes/solvents in the complete combustion reactions. The results have been further analyzed by X-ray diffraction spectra, which revealed that Co3O4, CoO, and LiCoO2 were the main solid products for the combustion reactions of studied systems. And there are more CoO and less LiCoO2 products for the higher ratio of cathodic materials system and more amount of heat generated. It means that the combustion reaction, which produced CoO, generated more amount of heat than LiCoO2. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
A series of four different dilithium salts of structure F3CSO2N(Li)SO2-(CF2)x-SO2N(Li)SO2CF3, with x = 2, 4, 6, 8 were synthesized and characterized in polyethylene-oxide-based solid polymer electrolytes. Each salt may be thought of as two bis[(perfluoroalkyl)sulfonyl]imide anions linked together by a perfluoroalkyl chain of a particular length. Taken together, this homologous series provides an opportunity to study the effects of linker chain length and degree of fluorination in dianionic (and ultimately polyanionic) salts on the properties, particularly the conductivity, of the salts in various solvating media. SPEs in polyethylene oxide were characterized using scanning calorimetry, X-ray diffraction, 1H and 19F NMR, and electrochemical impedance spectroscopy for SPEs prepared using ethylene-oxide-oxygen-to-lithium (EO:Li) ratios of 10:1 and 30:1. Trends in SPE ionic conductivity with anion structure revealed an unexpected trend whereby ionic conductivity is generally rising with increased length of the perfluoroalkylene linking group in the dianions. This trend could be the result of a decrease in dianion basicity that results in diminished ion pairing and an enhancement in the number of charge carriers with increasing anion fluorine content, thereby increasing ionic conductivity.  相似文献   

17.
The development of solvent-free low-dimensional polymer electrolytes intended for use in solvent-free lithium batteries operating at ambient or sub-ambient temperatures is described. The synthetic routes to the amphiphilic polymers I having 5-alkoxy-3,4-phenylene units connected with oligoethoxy segments via polyester-ether or pure polyether links (abbrev. CmOn, m = 12, 16, 18, n = 1-5) and to the copolymers CmO1-CmOn are described. The structures, thermal properties and SAXS long spacings of their complexes with lithium salts (type A) and with long chain n-alkane or alkyl side chain intercalation (type B) are discussed. However, high ambient conductivities (10(-4)-10(-3) S cm(-1)) are observed in type C systems when a second copolymer based on polytetramethylene oxide segments (II) is incorporated as a microphase between the lamellae of I and serving as an ion bridge or "glue". DC polarization between Li electrodes also gives ambient conductivities >/=ca.10(-3) S cm(-1). In type D systems the I/II interface is stabilized by including a copolymer III, promoting high reproducibility in performance. Copolymers I of CmO1-CmO5 having CmO1 in excess give optimum conductivities with low temperature-dependence. This, together with molecular modeling, suggests uncoupled ion mobilities by hopping between small aggregates in the interlamellar spaces.  相似文献   

18.
Wu  Hao  Han  Haoqin  Yan  Zhenhua  Zhao  Qing  Chen  Jun 《Journal of Solid State Electrochemistry》2022,26(9):1791-1808
Journal of Solid State Electrochemistry - Chloride solid-state electrolytes (SSEs) with wide electrochemical windows, high room-temperature ionic conductivity, and good stability towards air have...  相似文献   

19.
随着锂离子电池的市场拓展,安全性问题已成为电动汽车、大规模储能等应用领域关注的首要问题. 目前商品化的锂离子电池普遍采用低沸点碳酸酯类电解液,其易燃性成为电池不安全性的主要隐患. 为了提高锂离子电池的本征安全性,阻燃或不燃性电解液成为近年来研究的热点,其中以磷酸酯为溶剂的阻燃型或不燃型电解液受到广泛关注. 本文主要介绍磷酸酯阻燃和不燃电解液的研究状况,分析了这类电解液与锂离子电池正负极的兼容性问题,讨论了改善磷酸酯电解液电化学兼容性的途径,提出了发展高效、安全、稳定的不燃电解液的一些思路.  相似文献   

20.
Abstract  Soft matter provides diverse opportunities for the development of electrolytes for all solid state lithium batteries. Here we review soft matter solid electrolytes for lithium batteriesthat are primarily obtained starting from liquid electrolytic systems. This concept of solid electrolyte synthesis from liquid is significantly different from prevalent approaches. The novelty of our approach is discussed in the light of various fundamental issues and in relation to its application to rechargeable lithium batteries. Graphical abstract   M. Patel and S. K. Das have contributed equally to the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号