首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.

As a clean and sustainable energy source, hydrogen is widely considered as an engine fuel by top researchers. In view of the fact that the uneven fuel mixture of diesel fuel deteriorated the combustion and emissions process, it is expected to adopt diesel and hydrogen dual-fuel combustion technology to optimize combustion and heat release of diesel engine. In this study, experiments are carried out on a diesel engine and the combustion characteristics of the engine with different hydrogen ratios (RH) are compared. It has been found that hydrogen addition is conducive to accelerate the heat release rate and improve the thermal efficiency. Specifically, compared with pure diesel conditions, the peak pressure increased by 7.7% and the cumulative heat release rate increased by 3.7% under the condition of RH of 20%. Moreover, although the effect on the ignition delay period is not clear, the higher RH brings about earlier heat release center and more cumulative heat release while enhancing the heat release of premixed combustion reducing the diffusion combustion and post-combustion.

  相似文献   

2.

The present work emphasis on to estimate the theoretical findings of energy and exergy analysis of biodiesel fueled with diesel on variable compression ratio engine at various combinations of fuel blend at different compression ratios. This study aims to identify the optimum engine settings based on compression ratio and biodiesel blends. The engine is operated with methyl esters of rubber seed oil and its 20, 40, 60 and 80% blends with diesel on volume basis. The compression ratio is varied from 18:1 to 22:1 at five compression ratios at 80% load in 3.5 kW, 1500 rpm, single cylinder water-cooled direct injection engine. The variables analyzed are energy and exergy potential of fuel input, shaft work, cooling water, maximum pressure, heat release rate, exergy destruction, brake-specific energy consumption, brake thermal efficiency, second law efficiency, entropy generation, exhaust gas temperature and various emissions. It is observed that the combination of CR 20, B20 and B40 at 80% load gives a better performance in thermodynamic analysis of methyl esters of rubber seed oil blended with diesel in VCR engine.

  相似文献   

3.
Hou  Limin  Yu  Qingbo  Wang  Kun  Wang  Tuo  Yang  Fan  Zhang  Shuo 《Journal of Thermal Analysis and Calorimetry》2019,136(1):317-330

Depletion of non-renewable energy sources are at elevated manner due to the rapid growth of industrialization and transportation sector in last few decades and leads to further energy demand. Biodiesels especially second-generation fuels from non-edible oil resources are alternate sources for replacement of diesel fuel in CI engines due to their considerable environmental benefits. In the present work, non-edible feedstock of Calophyllum inophyllum seed oil (tamanu oil) is used for biodiesel production. Transesterification method is used for preparation of biodiesel in the existence of methanol with NaOH as catalyst. The copper nanoparticles are synthesized by electrochemical method, and it is characterized by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). XRD and SEM results confirm the presence of copper nanoparticle and size of around 30 nm. This paper aims to investigate the effects of the copper additive nanoparticles with biodiesel blends on the engine performance, combustion and emission characteristics of single-cylinder direct-injection diesel engine and compared that with diesel fuel. The results showed that the addition of nano-additives enhances brake thermal efficiency and reduces specific fuel consumption compared to biodiesel blends but slightly lower than diesel. Combustion characteristics also are enhanced by improved oxidation reaction inside the combustion chamber which resulted in higher heat release rate. The emissions of HC, NOx and O2 are significantly reduced for nano-additive blends compared to diesel but increased CO2 emission was observed. It is noticed that higher CO2 emission and substantial reduction of unused O2 emissions from engine fueled with nano-additive are evident for enhanced oxidation and better combustion. Energy and exergy analysis of the diesel engine is carried out to estimate the effect of using nanoparticle additive with biodiesel.

  相似文献   

4.
F-T柴油对电控高压共轨柴油机性能及排放影响的研究   总被引:2,自引:0,他引:2  
在满足国Ⅲ排放的现代高压共轨柴油机上,研究了掺烧不同比例F-T柴油混合燃料对发动机性能和排放的影响。结果表明,随着掺烧比例的加大,发动机的动力性略有下降,在外特性上,与燃烧国Ⅲ柴油相比,燃用F-T柴油时,扭矩最大下降2.2%,而燃油消耗率最高下降7.1%,有效热效率提高了4.5%。在十三工况的排放上,碳氢化合物(HC)、氮氧化物(NOx)、一氧化碳(CO)和颗粒(PM)的比排放量较国Ⅲ柴油均有明星下降,其中尤以燃用F-T柴油下降的幅度最大,PM降低了25.5%、NOx降低了11.7%、HC降低了39.3%、CO降低了33.9%。F-T柴油是柴油机的优良替代燃料。  相似文献   

5.
Sulfur impact on diesel emission control- A review   总被引:3,自引:0,他引:3  
The effect of sulfur on diesel emission control is reviewed in this paper. Diesel exhaust differs from that of petrol engine exhaust in two major characteristics. Firstly, diesel exhaust contains a far higher amount of particulate matter, and secondly, the exhaust is far leaner, that is, far more oxidizing than a typical exhaust from petrol engines. Under these conditions, the conventional three-way catalysts are not effective in reducing NOx . Emission from diesel engines is a complex phenomenon. The composition, the properties and the amount of these emissions depend on strictly technical parameters such as engine design and engine operation characteristics and on fuel and lube oil composition. Diesel fuel contains a small amount of sulfur which has an adverse effect even on the raw particulate emissions. The investigations on the effect of sulfur on hydrocarbons, CO and NOx abatement in diesel exhaust gas is reviewed together with the newest technologies to avoid catalyst deactivation by unwanted SO2 reactions.  相似文献   

6.
F-T柴油在直喷式柴油机中燃烧与排放特性的研究   总被引:6,自引:1,他引:6  
煤通过Fischer-Tropsch (F-T)合成可得到十六烷值高、硫和芳香烃质量分数极低的F-T柴油。研究分析了未作改动的单缸直喷式柴油机燃用F-T柴油时的燃烧和排放特性。结果表明,与燃用0号柴油相比,燃用F-T柴油时的滞燃期平均缩短18.7%,预混燃烧放热峰值降低26.8%,扩散燃烧放热峰值较高,燃烧持续期相当。燃用F-T柴油时的最高燃烧压力略低,最大压力升高率显著下降,机械损失和燃烧噪音较小,燃油消耗率和热效率都得到显著改善。燃用F-T柴油可同时降低CO、HC、NOx和炭烟排放,其中NOx和炭烟分别平均降低16.7%和40.3%。研究表明,F-T柴油是柴油机良好的清洁代用燃料。  相似文献   

7.

This paper demonstrates the study of performance, combustion and emission characteristics of a common rail diesel injection (CRDI) engine with the influence of exhaust gas recirculation (EGR) (5, 15 and 25%) at various fuel injection pressures (400, 500 and 600 bar) under the effective load conditions (0, 25, 50, 75 and 100%). The experiments were carried out in a controlled manner using the CRDI engine fuelled with 80% (D80) diesel (98% purity) blended with 20% (B20) tallow biodiesel. The engine has been operated at a rated speed of 1500 rpm on all load conditions, fuel injection timings of 10°, 15° and 20° bTDC, fuel injection pressures of 400, 500 and 600 bar, respectively. Combustion-influenced performance characteristics such as variation of in-cylinder pressure and net heat release rate in J deg?1 are also studied with the above operating conditions. It was observed that the usage of 20% biofuel blend shows considerable improvement in combustion, and it further enhances with an increase in the injection pressures. Besides, EGR (up to 25%) reduced significant pollutants at higher operating pressures (600 bar) at higher load conditions. It was also observed that CO2 emission increased with increase in the % EGR with an increase in the load conditions. However, for CO emission increased up to 50% load condition and subsequently tends to decrease due to improved combustion at higher load; hence higher temperature. NOx, smoke opacity continue to increase with the increase in pressure and the percentage increase in EGR due to its attainment of adiabatic temperature, which leads to the pathway for the Zeldovich mechanism. The present work shows light on the usage of tallow methyl ester produced from the wastes in the tannery industry as alternate biofuel operating the CRDI engines without compromising its combustion and emission characteristics to deliver the same power as petro-diesel.

  相似文献   

8.
乙醇/柴油混合燃料的相溶性及对发动机性能影响的研究   总被引:2,自引:0,他引:2  
利用助溶剂解决乙醇/柴油的相溶性问题,讨论了混合燃料中乙醇和助溶剂添加量对相溶性的影响,并使用助溶剂体积分数为1.5%、乙醇体积分数分别为5%、10%、15%的混合燃料及 20号纯柴油(分别表示为E5、E10、E15和 E0)在发动机台架上进行了性能和排放试验。研究结果表明,柴油的烃组成是决定相分离温度的决定性因素;对全部测试油品,乙醇体积分数在10%、助溶剂添加体积分数为1.5%时,混合燃料相溶性较好。台架试验显示,随着混合燃料中乙醇掺烧比例的增加,发动机的燃油消耗率逐渐增加,而发动机的额定功率和最大扭矩逐渐降低,但最大扭矩降低的幅度较小;此外,随着乙醇掺烧比例的增加,CO比排放量减少,HC、NOx和PM的比排放量逐渐增加,但NOx和PM的比排放量增加幅度不大。10%体积分数的乙醇添加量是乙醇/柴油的最佳掺烧比。  相似文献   

9.
Water-in-diesel (W/D) emulsion fuels were prepared through an ultrasonic processor by using high energy emulsification method. Accordingly, the physical and chemical properties were analyzed. A decrease in viscosity was found in the emulsion fuel in contrast to the neat diesel which signifies the enhanced fluidity of the fuel. The emulsion fuel was then used to carry combustion tests in an internal combustion engine. A decrease in exhaust temperature was observed when a high surfactant to water ratio was used, which lead to minimal heat loss. As water is emulsified with diesel, effectiveness of combustion is improved rather than neat diesel fuel. It was also explored that the addition of water-in-diesel is influential in terms of reduction in exhaust gas emission such as carbon dioxide, carbon monoxide, ammonia from the internal combustion engine. Therefore, this type of emulsion fuel would be a useful contribution in the fuel economy, but also in making it environmentally friendly since diesel fuel is now considered one of the leading fuels causing ecological contamination.  相似文献   

10.
Vegetable oil derived fuels for diesel engines are becoming important as alternative to petroleum diesel fuels due to their environmental friendliness and availability. Ignition quality in compression ignition (CI) engines is influenced by thermal characteristics and fuel properties. In this study, the effects of vegetable oil transesterification and vegetable oil–1-butanol-diesel blends on fuel properties, cetane number (CN) and thermal characteristics were experimentally investigated. Methyl esters (biodiesel) and 10% vegetable oil–10% 1-butanol–80% diesel blends were prepared from croton oil (CRO), coconut oil (COO) and jatropha oil (JAO). CN was measured in a CFR F-5 engine, and a thermogravimetric analysis (TG), as well as the determination of fuel properties of vegetable oils, biodiesels and blends was carried out. It can be observed for vegetable oils that they possess low volatility characteristics, low CN and high viscosity different from those of biodiesels, blends and diesel fuel. It was observed that biodiesels and blends exhibit similarities with diesel in the fuel characteristics, CN and TG curves.  相似文献   

11.
《Analytical letters》2012,45(4):295-302
Abstract

Congo red as a single spray reagent locates and identifies dithiocarbamate fungicides after their separation on thin-layer chromatograms. The chromatogram is sprayed with Congo red which stains the entire chromatogram red. While still wet the chromatogram is exposed to bromine vapor in a glass tank. Dithiocarbamates appear as blue spots against a bleached background. A second spray with the reagent after the dissipation of the bromine intensifies the blue spots and turns the background red. The blue spots are very well defined and stable if protected from light. The procedure is rapid and requires no heating.  相似文献   

12.
Although the compression ignition engines are a significant source of power, their detrimental emissions create considerable problems to the environment as well as to humans. The objective of the present experimental investigation is to examine the effects of the magnetic nanofluid fuels on combustion performance characteristics and exhaust emissions. In this regard, the Fe3O4 nanoparticles dispersed in the diesel fuel with the nanoparticle concentrations of 0.4 and 0.8 vol% were employed for combustion in a single-cylinder, direct-injection diesel engine. After a series of experiments, it was demonstrated that the nanoparticle additives, even at very low concentrations, have considerable influence in diesel engine characteristics. Furthermore, the results indicated that the nanofluid fuel with nanoparticle concentration of 0.4 vol% shows better combustion characteristics in comparison with that of 0.8 vol%. Based on the experimental results, NO x and SO2 emissions dramatically reduce, while CO emissions and smoke opacity noticeably increase with increasing the dosing level of nanoparticles.  相似文献   

13.
Solid deposits from commercially available high-pressure diesel injectors (HPDI) were analyzed to study the solid deposition from diesel fuel during engine operation. The structural and chemical properties of injector deposits were compared to those formed from the thermal oxidative stressing of a diesel fuel range model compound, n-hexadecane at 160°C and 450 psi for 2.5 h in a flow reactor. Both deposits consist of polyaromatic compounds (PAH) with oxygen moieties. The similarities in structure and composition of the injector deposits and n-hexadecane deposits suggest that laboratory experiments can simulate thermal oxidative degradation of diesel in commercial injectors. The formation of PAH from n-hexadecane showed that aromatization of straight chain alkanes and polycondensation of aromatic rings was possible at temperatures as low as 160°C in the presence of oxygen. A mechanism for an oxygen-assisted aromatization of cylcoalkanes is proposed.  相似文献   

14.
Biodiesel is biodegradable and nontoxic, and it significantly reduces toxic and other emissions when burned as a fuel. The advantages of biodiesel as diesel fuel are its portability, ready availability, renewability, higher combustion efficiency, non-toxicity, higher flash point, and lower sulfur and aromatic content, higher cetane number, and higher biodegradability. The major disadvantages of biodiesel are its higher viscosity, lower energy content, higher cloud point and pour point, higher nitrogen oxide (NOx) emissions, lower engine speed and power, injector coking, engine compatibility, high price, and greater engine wear. The technical disadvantages of biodiesel/fossil diesel blends include problems with fuel freezing in cold weather, reduced energy density, and degradation of fuel under storage for prolonged periods. The sources of biodiesel are vegetable oils and fats. The direct use of vegetable oils and/or oil blends is generally considered to be unsatisfactory and impractical for both direct injection and indirect type diesel engines because of their high viscosities and low volatilities injector coking and trumpet formation on the injectors, higher level of carbon deposits, oil ring sticking, and thickening and gelling of the engine lubricant oil, acid composition. Biodiesel is obtained by transesterifying triglycerides with methanol. A popular variation of the batch transesterification process which needs high alcohol/acid ratio (several separation problems and high corrosivity and toxicity) is the use of continuous stirred tank reactors in series. This continuous process is heterogeneous and is based on reactive distillation. The key factor is the selection of the right and effective solid catalyst which leads to reduction of energy consumption and investments at all.  相似文献   

15.
合成氨是一种成本低廉的化工原料,具有较高能量密度和辛烷值、易于压缩储运、燃烧不产生CO2等优点,是一种应用前景广泛的新型清洁能源。氨既可替代汽油、柴油等化石燃料,为汽车发动机直接提供清洁燃料,也可以经催化分解制取氢气,为车载燃料电池提供安全氢气。作为传统石油燃料的理想替代品,氨为解决环境污染和能源短缺问题提供了新的燃料选择。本文主要从发动机燃料和燃料电池原料两方面,介绍氨用于汽车动力源的优越性和可操作性,以及国内外相关研究进展;集中分析了氨分解制氢的催化剂体系的研究进展和局限性,以及合成氨的研究现状。  相似文献   

16.
Summary Concentrations of 20 trace and minor components, such as metals, nitrogen and sulphur, were determined in representative diesel soot samples corresponding to various driving patterns of an old and a new type of Mercedes-Benz diesel engine for passenger cars. The samples were analysed by instrumental neutron activation analysis, and after decomposition, by flame and graphite furnace atomic absorption spectrometry. The content of sulphur was determined by a method based on the formation of hydrogen sulphide and precipitation micro-titrimetry. The concentrations of the elements Au, La, Sb, Sc, and V were at the sub-g/g level; As, Ba, Cd, Co, Cr, Mn, Ni, and Se were at the lower g/g level; and Ca, Cu, Fe, N, Na, Pb, S, and Zn ranged from the upper g/g to lower percent levels. The emission of several elements was likely the result of different factors such as utilization of organometallic additives (Ca, Na, Zn) in diesel fuel or lubrication oil, contamination of diesel fuel by alkyllead compounds, wear and corrosion of the engine and exhaust system parts. The concentration of elemental components in diesel soot, generally, varied with operating conditions, which affected fuel and oil consumption, combustion efficiency (soot production), and mechanical strain. Permanent address: Czechoslovak Academy of Science, Institute of Analytical Chemistry, Vevei 96, CS-61142 Brno, SFR  相似文献   

17.
A conventional diesel burner has arisen several shortcomings, such a large supply of air for a stoichiometric combustion, and a long heat-up time to reach the light-off temperature of catalyst in a diesel after-treatment system. This study shows a promising potential of using a plasma reformer for staged diesel combustion with minimized air and fuel consumption, and increased the flame stability with low NOx emission. A working principle of a plasma fuel reformer for staged combustion is explained in detail by both visualizing the plasma-assisted flame and analyzing the gas products. The concentrations of H2, CO, NOx and the unburned total hydrocarbons were measured by gas chromatography and a commercial gas analyzer. Considering the operating condition of diesel exhaust gas is too harsh to maintain a stable diesel flame with a conventional diesel burner, plasma fuel reformer has distinctive advantages in stable flame anchoring under the condition of low oxygen concentration and fast flow speed. The re-ignition and stable flame anchoring by entrapment of oxygen in exhaust gas is mainly attributed to the low ignition energy and high diffusion velocity of hydrogen molecule. From an economic point of view, plasma reformer is also the only technology which can use only 1/3–1/8 of the air required for the stoichiometric burning of a conventional diesel burner. A conventional burner was simulated and analyzed to consume up to 30 % more fuel compared to the plasma reformer with the staged combustion to get the same level of temperature elevation in a real diesel engine scale.  相似文献   

18.

The heat of combustion (HOC) of butanol/gasoline and butanol/diesel fuel blends was systematically determined in a Parr 6725/6772 heat-loss compensated semi-microcalorimeter under controlled temperature and pressure conditions. A set of blends containing 15 and 30% of butanol, in mass fraction, was tested, and the results were compared to those obtained for pure ethanol, pure gasoline, pure diesel, and Brazilian commercial gasoline. In view of the high volatility of samples, the use of gelatin capsules was necessary to avoid evaporation losses during the critical step of sampling. Results evidenced that despite a slight energy reduction observed for all blends, HOC values remained quite close to those measured for gasoline and diesel, even when considering blends with 30% of butanol in mass fraction, which reduction does not exceed 8.5%. Compared to ethanol, a HOC up to 14.7% higher was achieved for butanol. The present work confirms that in mass fractions up to 30%, butanol can be satisfactorily blended with gasoline and diesel without causing major impacts on the fuel energy density and, more than that, can offer energy advantage compared to ethanol.

  相似文献   

19.

An experimental investigation on the feasibility and relevance of the tri fuel blends of ethanol and dibutyl ether with diesel was studied to replace pure diesel. The solubility of the ethanol and dibutyl ether with a percentage of 25% and 75% resulted with no phase separation, found miscible and stable with diesel at any percentage. However, the properties such as densities and refractive index experimentally verified for different blend ratios. A density of test samples with various compositions was tested. High precise equipment is engaged to analyze the density, speed of sound, refractive index for various fuel compositions. The temperature ranges between 298 K and 343 K show a greater impact on variation in the fuel properties. Density, speed of sound, refractive indices measured as a function of the temperature with an accuracy of?±?0.001 and?±?0.0001. Further, the validation of experimental method has been tested using Lorentz–Lorenz (L–L) analysis with a deviation of 0.4%. The uncertainty for fluid velocity is?±?0.3 m s?1, and the experimental estimated excess molar volume uncertainty is 2?×?10?3 cm3 mol?1. The substantiation of intermolecular interactions between the liquids is found to be significant in both experimental and prediction analysis of each sample. The exergy destruction specifies with 46% which includes the air flow and chemical heat energy transfer losses.

  相似文献   

20.
The sulfur content of diesel fuel is of environmental concern because sulfur can facilitate the formation of diesel particulate matter (DPM) and sulfur dioxide (SO2) in the exhaust can poison catalytic converters. The US Environmental Protection Agency (EPA) has established more stringent regulations to reduce the sulfur content of diesel fuels in the near future. In this study, various types of organosulfur compounds in DPM extracts and the corresponding fuels have been determined by gas chromatography with atomic emission detection. The diesel fuels used have sulfur contents of 2284 and 433 ppm, respectively, and are labeled as high-sulfur and low-sulfur diesel fuels. The compounds identified are mainly polycyclic aromatic sulfur heterocycles (PASHs). In the fuels tested, trimethylbenzothiophenes (TMBTs), dibenzothiophenes (DBTs), and 4-methyldibenzothiophene (4-MDBT) were the most abundant sulfur compounds, while larger PASH compounds were more abundant in DPM extracts. The high-sulfur diesel fuel contained a larger proportion of PASHs with one or two rings (lighter PASHs). In DPM, the concentrations of total organic sulfur and individual PASHs are higher for the high-sulfur diesel fuel, and the relative percentage of one or two-ring PASHs is higher as well. The influence of engine load on the DPM composition was also examined. With increasing load, the PASH concentration in DPM decreased for lighter PASHs, increased for heavier PASHs, and had a bell-shaped distribution for PASHs in between.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号