首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the research, thermogravimetry (TG), a combination of thermogravimetry and Fourier transform infrared spectrometer (TG–FTIR) and X-ray diffraction (XRD) were used to investigate pyrolysis characteristics of moso bamboo (Phyllostachys pubescens). The Flynn–Wall–Ozawa and Coats–Redfern (modified) methods were used to determine the apparent activation energy (Ea). The TG curve indicated that the pyrolysis process of moso bamboo included three steps and the main pyrolysis occurred in the second steps with temperature range from 450 K to 650 K and over 68.69% mass was degraded. TG–FTIR analysis showed that the main pyrolysis products included absorbed water (H2O), methane gas (CH4), carbon dioxide (CO2), acids and aldehydes, ammonia gas (NH3), etc. XRD analysis expressed that the index and width crystallinity of moso bamboo gradually increased from 273 K to 538 K and cellulose gradually degraded from amorphous region to crystalline region. The Ea values of moso bamboo increased with conversion rate increase from 10 to 70. The Ea values were, respectively 153.37–198.55 kJ/mol and 152.14–197.87 kJ/mol based on Flynn–Wall–Ozawa and Coats–Redfern (modified) methods. The information was very helpful and significant to design manufacturing process of bio-energy, made from moso bamboo, using gasification or pyrolysis methods.  相似文献   

2.
Moso bamboo (Phyllostachys pubescens) and sinocalamus affinis (Phyllostachys heterocycla) were used in the research. Thermogravimetry (TG), a combination of TG and Fourier transform infrared spectrometer (TG–FTIR), X-ray diffraction (XRD), and differential thermal analysis (DTA) were used to investigate thermal decomposition of bamboo. The calorific value and smoke release process of both bamboos were also tested, respectively. The results from TG indicated that degradation process of sinocalamus affinis and moso bamboo was similar, but their degradation temperatures were different. The main decomposition occurred in the second step and about 68.70 and 64.63% masses degraded for sinocalamus affinis and moso bamboo, whose temperature of maximum mass loss was 319 and 339 °C, respectively. DTA curve showed that the thermal decomposition of both bamboos was an absorbance heat process. TG–FTIR analysis showed that the main pyrolysis products of both bamboos were similar, including absorbed water (H2O), methane gas (CH4), carbon dioxide (CO2), acids and aldehydes, ammonia gas (NH3). The calorific value of moso bamboo (19,291 J g?1 K?1) was higher than that of sinocalamus affinis (18,082 J g?1 K?1). The initial time of smoke release process of moso bamboo was later, and its maximum smoke density was higher than that of sinocalamus affinis. The difference was probably attributed to different compositions and structure of sinocalamus affinis and moso bamboo. The results from this research are very helpful to better design manufacturing process of bio-energy, made from bamboo, by gasification and pyrolysis methods.  相似文献   

3.
Thermal behavior of textile waste was studied by thermogravimetry at different heating rates and also by semi-batch pyrolysis. It was shown that the onset temperature of mass loss is within 104–156 °C and the final reaction temperature is within 423–500 °C. The average mass loss is 89.5%. There are three DTG peaks located at the temperature ranges of 135–309, 276–394 and 374–500 °C, respectively. The first two might be associated with either with decomposition of the hemicellulose and cellulose or with different processes of cellulose decomposition. The third peak is possibly associated to a synthetic polymer. At a temperature of 460 °C, the expected amount of volatiles of this waste is within 85–89%. The kinetic parameters of the individual degradation processes were determined by using a parallel model. Their dependence on the heating rate was also established. The pyrolysis rate is considered as the sum of the three reaction rates. The pyrolysis in a batch reactor at 700 °C and nitrogen flow of 60 ml/min produces 72 wt.% of oil, 13.5 wt.% of gas and 12.5 wt.% of char. The kinetic parameters of the first peak do not vary with heating rate, while those of the second and the third peak increase and decrease, respectively, with an increasing heating rate, proving the existence of complex reaction mechanisms for both cases.  相似文献   

4.

The thermal decomposition of cotton and hemp fibers was studied after mild alkaline treatments with tetramethyl-, tetraethyl- and tetrabutylammonium hydroxides with the goal of modeling the chemical activation during carbonization of cellulosic fibers. The thermal decomposition was studied by thermogravimetry/mass spectrometry and pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS). The treated samples decomposed in two temperature ranges during heating in the thermobalance. At lower temperature, tetraalkylammonium hydroxides (TAAH) ionically bonded to the cellulose molecules were decomposed; moreover, the alkaline agents initiated the partial decomposition of cellulose. Those fiber segments, which were not accessible for TAAH, decomposed at similar temperatures as the original cotton and hemp samples. It is known that quaternary ammonium hydroxides swell the cellulosic fibers; however, the results of this study proved that there was a chemical interaction between the alkaline swelling agents and cotton or hemp fibers at rather low temperatures (200–300 °C). The evolved products indicated that the alkaline chemicals reacted with the cellulose molecules and alkylated compounds were formed. This observation was confirmed by thermochemolysis experiments carried out by Py–GC/MS using tetramethylammonium hydroxide reagent. The thermochemolysis experiments under mild conditions resulted in the methylation of the glucoside units and levoglucosan, and no peeling reactions of the sugar units were observed as during strong alkaline conditions described in the literature.

  相似文献   

5.
竹材非等温热解动力学   总被引:1,自引:0,他引:1  
利用热重分析技术对竹材在高纯N2条件下,从室温至1273K进行了非等温热解分析,研究了升温速率(5、10、20和40K/min)对热解过程的影响,探讨了其热解机理。研究表明,竹材非等温热解过程主要分为失水干燥、快速热解和缓慢分解三个阶段组成,其中第二阶段是整个过程的主要阶段,析出大量挥发分造成明显失重。升温速率对热解过程有显著影响,随着升温速率的增加,最大热解速度增大,对应的峰值温度升高,热滞后现象加重,热解各阶段向高温侧移动。热解机理满足一维扩散Parabolic法则,反应机理函数为g(α)=α2。不同升温速率下活化能为75.32-82.99kJ.mol-1,指前因子为1.17×105-1.12×106min-1。  相似文献   

6.
The basic pyrolysis behaviour of eight different biomass fuels has been tested in a thermogravimetric analyser under dynamic conditions (5, 20 and 50 °C min?1 heating rates) from room temperature up to 1,000 °C. Their decomposition was successfully modelled by three first-order independent parallel reactions, describing the degradation of hemicellulose, cellulose and lignin. Hemicellulose would be the easiest one to pyrolyse, while lignin would be the most difficult one. Experimental and calculated results show good agreement. The reactivity of the different biomass type functions of various thermal, kinetic and composition parameters are discussed. The effect of the heating rate on pyrolysis behaviour was studied, and a comparison between slow and fast heating rate reveals a small displacement of the DTG profiles to higher temperatures. The heating rate not only affects the highest mass loss rate temperature but also influences the mass loss rate value.  相似文献   

7.
8.
Pyrolysis of textile wastes: I. Kinetics and yields   总被引:1,自引:0,他引:1  
Thermal behavior of textile waste was studied by thermogravimetry at different heating rates and also by semi-batch pyrolysis. It was shown that the onset temperature of mass loss is within 104–156 °C and the final reaction temperature is within 423–500 °C. The average mass loss is 89.5%. There are three DTG peaks located at the temperature ranges of 135–309, 276–394 and 374–500 °C, respectively. The first two might be associated with either with decomposition of the hemicellulose and cellulose or with different processes of cellulose decomposition. The third peak is possibly associated to a synthetic polymer. At a temperature of 460 °C, the expected amount of volatiles of this waste is within 85–89%. The kinetic parameters of the individual degradation processes were determined by using a parallel model. Their dependence on the heating rate was also established. The pyrolysis rate is considered as the sum of the three reaction rates. The pyrolysis in a batch reactor at 700 °C and nitrogen flow of 60 ml/min produces 72 wt.% of oil, 13.5 wt.% of gas and 12.5 wt.% of char. The kinetic parameters of the first peak do not vary with heating rate, while those of the second and the third peak increase and decrease, respectively, with an increasing heating rate, proving the existence of complex reaction mechanisms for both cases.  相似文献   

9.
Chemical pretreatment combined with high-intensity ultrasonication was performed to disintegrate cellulose nanofibers from poplar wood powders. The cellulose content in each suspension was treated as the control variable because the suspension concentration significantly influences the properties of the resultant cellulose nanofibers via ultrasonic processing. The as-obtained cellulose nanofibers were characterized by fiber diameter distribution, crystal structure, and rheological analysis. An increase of not more than 1.2 % of the cellulose content resulted in finer nanofibers. Both storage modulus and loss modulus of cellulose nanofiber suspensions rapidly increased with increasing concentration because of the gradual formation of a stronger network structure. In addition, the dynamic mechanical behavior of suspensions with fiber contents lower than 0.8 % was affected by the frequency and temperature alteration in contrast with the suspension with higher fiber contents. The sol–gel transformation and the visco-elastic transition depend on the hydroxyl bonding and the cross-linking extent of cellulose nanofibers in various concentration environments.  相似文献   

10.
TG, DTA, and TMA data on the pyrolysis of α-cellulase powder in air is reported together with the modified pyrolysis behavior of the cellulose impregnated with between 2–3% (w/w) of calcium, potassium, sodium and zinc chlorides. The lower temperature of onset of the pyrolysis (as shown by TG and TMA), the increased peak areas of the DTA exotherms, and the elimination of an initial endotherm present in the pure cellulose, all suggest an increased flammability for the impregnated samples. Other properties of the impregnated celluloses however favor a fire retardancy effect; these are an increase in the temperature of the first exothermic peak on the DTA, a reduction in the maximum rate of mass loss, a reduction in the% mass loss occurring in the first mass loss period, and an increase in the% ash remaining at 800°C. The relative effect of the various chlorides is examined and shown to correlate with other data already published.  相似文献   

11.
Water-insoluble pyrolytic cellulose with similar appearance to pyrolytic lignin was found in cellulose fast pyrolysis oil. The influence of pyrolysis temperature on pyrolytic cellulose was studied in a temperature range of 300–600 °C. The yield of the pyrolytic cellulose increased with temperature rising. The pyrolytic cellulose was characterized by various methods. The molecular weight distribution of pyrolytic cellulose was analyzed by gel permeation chromatography (GPC). Four molecular weight ranges were observed, and the Mw of the pyrolytic cellulose varied from 3.4 × 103 to 1.93 × 105 g/mol. According to the elemental analysis (EA), the pyrolytic cellulose possessed higher carbon content and lower oxygen content than cellulose. Thermogravimetric analysis (TGA) indicated that the pyrolytic cellulose underwent thermo-degradation at 127–800 °C and three mass loss peaks were observed. Detected by the pyrolysis gas chromatography–mass spectrometry (Py-GC/MS), the main pyrolysis products of the pyrolytic cellulose included saccharides, ketones, acids, furans and others. Fourier transforms infrared spectroscopy (FTIR) also demonstrated that the pyrolytic cellulose had peaks assigned to CO stretching and glycosidic bond, which agreed well with the Py-GC/MS results. The pyrolytic cellulose could be a mixture of saccharides, ketones, and their derivatives.  相似文献   

12.
稻秆半焦与CO2气化反应特性的研究   总被引:3,自引:2,他引:3  
利用三种热解炉装置,分别在热解终温550℃~950℃、加热速率0.1K/s~500K/s下热解制取稻秆半焦。采用等温热重法,在STA409综合热分析仪上进行了稻秆半焦与CO2的气化实验,考察了热解终温、热解速率以及气化温度对半焦气化反应性的影响。研究表明,热解条件对稻秆半焦的反应性影响很大。在热解终温为550℃~950℃时,随着热解温度的提高,其气化反应性呈下降趋势;热解速率越高,其气化反应性越好。在850℃~950℃,提高气化温度能提高稻秆半焦与CO2的反应性。采用扫描电镜技术观测了0.1K/s和500K/s 两种热解速率下半焦的表面形貌。结果显示,后者具有更加丰富的孔隙结构,且大孔结构明显多于前者。采用混合反应模型描述了稻秆半焦与CO2的气化反应过程,求取了反应动力学参数。  相似文献   

13.
Switchgrass is a high yielding perennial grass that has been designated as a potential energy crop. One method of converting switchgrass to energy is by thermochemical conversion to syngas. This requires that the rate of thermal decomposition of switchgrass and the rate of production of components of the syngas be quantified. Ground switchgrass was pyrolyzed at heating rates of 10–40 °C/min in a thermogravimetric analyzer coupled to a Fourier Transform infrared spectrometer. The amount of gases (ppm) that were volatilized during the duration of experiment was quantified. The pyrolysis process was found to compose of four stages: moisture evaporation, hemicellulose decomposition, cellulose decomposition and lignin degradation. The peak temperature for hemicellulose (288–315 °C) and cellulose degradation (340–369 °C) increased with heating rate. FTIR analysis showed that the following gases were given off during the pyrolysis of switchgrass: carbon dioxide, carbon monoxide, acetic acid, ethanol, and methane.  相似文献   

14.
采用热裂解-气相色谱/质谱仪联用技术,研究毛竹酶解/温和酸水解木质素(简称EMAL)的热解特性和热解产物的分布与形成规律.以温度为重要因素,研究其对木质素快速热裂解产物的影响,并通过主要的热解产物推断热解反应途径.研究结果表明,EMAL的热解产物主要是2,3-二氢苯并呋喃、酚类、脂类和少量乙酸.热解温度对热解产物组分的相对含量有显著影响,250~400 ℃时,产物主要是2,3-二氢苯并呋喃,320 ℃时其相对含量最高,达到66.26%;400~800 ℃时,热解产物主要是酚类,600 ℃时其相对含量最高,达到62.58%;800 ℃时出现了少量的乙酸.  相似文献   

15.
The compressed wheat and corn straw bale were pyrolyzed on a microwave heating device self-designed and built with respect to the time-resolved temperature distribution, mass loss and product properties. Considering scale up and technology promotion of microwave pyrolysis (MWP), the investigations on electricity consumption and energy balance of MWP were carried out emphatically. The results indicated that MWP had obvious advantages over conventional pyrolysis, such as heating rapid and more valuable products obtained. The distribution of pyrolysis products such as gas, liquid and char was close to 1:1:1 due to the medium pyrolysis temperature and the slow heating rate, which was not favorable for the formation of gas and/or liquid products. The content of H2 attained the highest value of 35 vol.% and syngas (H2 and CO) was greater than 50 vol.%. The electricity consumption of MWP was between 0.58 and 0.65 kW h (kg straw)−1 and with the increase of microwave power, the electricity consumption required for pyrolysis of unit mass of straw increased. The minimum microwave power for MWP was about 0.371 kW (kg straw)−1 and the proportion of heat loss and conversion loss of electricity to microwave energy occupied in the total input energy was 42%. Data and information obtained are useful for the design and operation of pyrolysis of large-sized biomass via microwave heating technology.  相似文献   

16.
Objectives of this study were to (1) examine the performance of a commercial coil pyrolyzer as a flash pyrolysis instrument, (2) determine product distribution from cellulose under flash pyrolysis conditions, and (3) investigate the effect of cellulose type, particle size, heating rate, heating time, and final or soaking temperature on the distribution.It was found that the pyrolysis behavior of the products could be classified into two groups according to their similarity with the production of CO or CO2. In the former, yield was an exponential function of weight loss, whereas in the latter, yield was an arithmetic function of weight loss. In the range studied, particle size and heating rate did not influence yield or its weight loss behavior. The type of cellulose, mainly degree of polymerization, influenced yield but not behavior.  相似文献   

17.
Pyrolysis of a wood chips mixture and main wood compounds such as hemicellulose, cellulose and lignin was investigated by thermogravimetry. The investigation was carried out in inert nitrogen atmosphere with temperatures ranging from 20°C to 900°C for four heating rates: 2 K min−1, 5 K min−1, 10 K min−1, and 15 K min−1. Hemicellulose, cellulose, and lignin were used as the main compounds of biomass. TGA and DTG temperature dependencies were evaluated. Decomposition processes proceed in three main stages: water evaporation, and active and passive pyrolysis. The decomposition of hemicellulose and cellulose takes place in the temperature range of 200–380°C and 250–380°C, while lignin decomposition seems to be ranging from 180°C up to 900°C. The isoconversional method was used to determine kinetic parameters such as activation energy and pre-exponential factor mainly in the stage of active pyrolysis and partially in the passive stage. It was found that, at the end of the decomposition process, the value of activation energy decreases. Reaction order does not have a significant influence on the process because of the high value of the pre-exponential factor. Obtained kinetic parameters were used to calculate simulated decompositions at different heating rates. Experimental data compared with the simulation ones were in good accordance at all heating rates. From the pyrolysis of hemicellulose, cellulose, and lignin it is clear that the decomposition process of wood is dependent on the composition and concentration of the main compounds.  相似文献   

18.

The mechanism and kinetics of thermal degradation of materials developed from cellulose fiber and synergetic fire retardant or expandable graphite have been investigated using thermogravimetric analysis. The model-free methods such as Kissinger–Akahira–Sunose (KAS), Friedman, and Flynn–Wall–Ozawa (FWO) were applied to measure apparent activation energy (Eα). The increased Eα indicated a greater thermal stability because of the formation of a thermally stable char, and the decreased Eα after the increasing region related to the catalytic reaction of the fire retardants, which revealed that the pyrolysis of fire retardant-containing cellulosic materials through more complex and multi-step kinetics. The Friedman method can be considered as the best method to evaluate the Eα of fire-retarded cellulose thermal insulation compared with the KAS and FWO methods. A master-plots method such as the Criado method was used to determine the possible degradation mechanisms. The degradation of cellulose thermal insulation without a fire retardant is governed by a D3 diffusion process when the conversion value is below 0.6, but the materials containing synergetic fire retardant and expandable graphite fire retardant may have a complicated reaction mechanism that fits several proposed theoretical models in different conversion ranges. Gases released during the thermal degradation were identified by pyrolysis–gas chromatography/mass spectrometry. Fire retardants could catalyze the dehydration of cellulosic thermal insulating materials at a lower temperature and facilitate the generation of furfural and levoglucosenone, thus promoting the formation of char. These results provide useful information to understand the pyrolysis and fire retardancy mechanism of fire-retarded cellulose thermal insulation.

  相似文献   

19.
In this study, a biochar-based magnetic solid-phase microextraction method, coupled with liquid chromatography–mass spectrometry, was developed for analyzing fentanyl analogs from urine sample. Magnetic biochar was fabricated through a one-step pyrolysis carbonization and magnetization process, followed by an alkali treatment. In order to achieve desired extraction efficiency, feed stocks (wood and bamboo) and different pyrolysis temperatures (300–700°C) were optimized. The magnetic bamboo biochar pyrolyzed at 400°C was found to have the greatest potential for extraction of fentanyls, with enrichment factors ranging from 58.9 to 93.7, presumably due to H-bonding and π–π interactions between biochar and fentanyls. Various extraction parameters, such as type and volume of desorption solvent, pH, and extraction time, were optimized, respectively, to achieve the highest extraction efficiency for the target fentanyls. Under optimized conditions, the developed method was found to have detection limits of 3.0–9.4 ng/L, a linear range of 0.05–10 μg/L, good precisions (1.9–9.4% for intrabatch, 2.9–9.9% for interbatch), and satisfactory recoveries (82.0–111.3%). The developed method by using magnetic bamboo biochar as adsorbent exhibited to be an efficient and promising pretreatment procedure and could potentially be applied for drug analysis in biological samples.  相似文献   

20.
Eight kinds of Radix Codonopsis (RC) from different origins in China were selected as the experimental samples fort his study. Their pyrolysis processes were researched by the method of thermogravimetry analysis, in which the heating course was set in the ways of programming temperature from room temperature to 500 °C at different heating rates. Research results show that the process in the heating period of RC includes three stages: water loss, fast pyrolysis, and medium rate decomposition. For cultivated RC, the average initial decomposition temperature in the fast pyrolysis stage is 115 °C, whereas the peak temperature of the fast pyrolysis stage is changed from 189 to 225 °C, in which stage the alcohol-soluble substances are mainly decomposed. It is required to control the operational temperatures of drying and concocting processes according to initial decomposition temperature. Kissinger–Akahira–Sunose model can be used to describe the process mechanism of RC pyrolysis, and the kinetic analyses based on the fast pyrolysis stage thermogravimetric data show that the activation energies change from 141 to 207 kJ mol?1 for cultivated RC samples and 122 to 131 kJ mol?1for wild RC samples. The alcohol-soluble extract (ASE) content of wild RC samples is lower than that of cultivated RC samples; their thermal stability is also relatively poor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号