首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 427 毫秒
1.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in aprotic solvents are elementary reactions for the discharging and charging processes on the cathode of the lithium-oxygen batteries, respectively. Understanding the mechanisms of these reactions at a molecular level has now become a bottleneck that hinders the development of the battery. This short article briefly reviews recent progresses in the studies of the ORR/OER mechanism in aprotic solvents. Two reaction mechanisms, the electrochemical pathway and chemical (disproportionation) pathway, will be discussed with their contribution to the ORR process on the cathode surface. Furthermore, the origin of the OER overpotential will also be discussed. The solutions to reduce the OER overpotential are noted with development of redox mediators.  相似文献   

2.
可持续能源的迅速发展,使绿色清洁的氢能源成为热点。质子交换膜(PEM)水电解是一项很有前途的技术,可高效生产高纯度氢气。IrO_(2)作为质子交换膜(PEM)水电解槽阳极氧析出反应(OER)的商用电催化剂,既能在强酸性、高强度腐蚀条件下保持稳定,又表现出优异的催化性能。然而,由于Ir的稀缺性和昂贵的价格,提高Ir基催化剂的OER活性,开发低Ir催化剂就显得至关重要。对其反应机理的认知是当前的研究热点之一,也是设计优异的OER催化剂的关键所在。因此,首先从OER机理出发,对目前被广泛认可的吸附物逸出机理(AEM)和晶格氧逸出机理(LOER)两种反应机理进行了研究。随后,根据所提出的这两种机理,介绍了OER催化剂设计的基本准则,即调控Ir基催化剂的电子结构,改善反应中间物种在催化活性位点上的吸附能,从而提高OER催化活性。并从催化剂的结构设计、形貌控制、载体材料3个方面简单概述了最近OER催化剂的研究进展。最后,在已有研究的基础上,提出了目前OER催化剂面临的困难与挑战,这为以后相关的研究指明了方向。  相似文献   

3.
Perovskite is a promising non-noble catalyst and has been widely investigated for the electrochemical oxygen evolution reaction (OER). However, there is still serious lack of valid approaches to further enhance their catalytic performance. Herein, we propose a spin state modulation strategy to improve the OER electrocatalytic activity of typical perovskite material of LaCoO3. Specifically, the electronic configuration transition was realized by a simple high temperature thermal reduction process. M-H hysteresis loop results reveal that the reduction treatment can produce more unpaired electrons in 3d orbit by promoting the electron transitions of Co from low spin state to high spin state, and thus lead to the increase of the spin polarization. Electrochemical measurements show that the catalytic performance of LaCoO3 is strongly dependent on its electronic configuration. With the optimized reduction treatment, the overpotential for the OER process in 0.5 M KOH electrolyte solution at 10 mA cm−2 current density was 396 mV, significantly lower than that of the original state. Furthermore, it can mediate efficient OER with an overpotential of 383 mV under an external magnetic field, which is attributed to the appropriate electron filling. Our results show that electron spin state regulation is a new way to boost the OER electrocatalytic activity.  相似文献   

4.
Electrochemical water splitting is a clean and sustainable process for hydrogen production on a large scale as the electrical power required can be obtained from various renewable energy resources. The key challenge in electrochemical water splitting process is to develop low-cost electrocatalysts with high catalytic activity for the hydrogen evolution reaction (HER) on the cathode and the oxygen evolution reaction (OER) on the anode. OER is the most important half-reaction involved in water splitting, which has been extensively studied since the last century and a large amount of electrocatalysts including noble and non-noble metal-based materials have been developed. Among them, transition metal borides and borates (TMBs)-based compounds with various structures have attracted increasing attention owing to their excellent OER performance. In recent years, many efforts have been devoted to exploring the OER mechanism of TMBs and to improving the OER activity and stability of TMBs. In this review, recent research progress made in TMBs as efficient electrocatalysts for OER is summarized. The chemical properties, synthetic methodologies, catalytic performance evaluation, and improvement strategy of TMBs as OER electrocatalysts are discussed. The electrochemistry fundamentals of OER are first introduced in brief, followed by a summary of the preparation and performance of TMBs-based OER electrocatalysts. Finally, current challenges and future directions for TMBs-based OER electrocatalysts are discussed.  相似文献   

5.
氢气作为一种清洁无污染的可再生能源,可以有效地解决全球能源危机和环境污染问题.低能耗水裂解制氢是公认的未来清洁制氢的有效途径之一.水裂解反应分为阳极上发生的析氧反应(OER)和阴极上发生的析氢反应,由于阳极半反应涉及四电子过程,反应动力学缓慢,进而导致整个水分解产氢效率低下,成为规模化水裂解制氢应用的瓶颈.贵金属Ir基...  相似文献   

6.
Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large-scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half-reaction. Co-, Ni-, and Fe-based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co-, Ni-, and Fe-based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis.  相似文献   

7.
开发高性能、 低成本的氧析出反应(OER)电催化剂是促进质子交换膜水电解(PEMWE)制氢规模化应用的关键。迄今为止, OER催化剂的最佳选项仍为贵金属铱(Ir), 但其仍存在活性不足和储量稀缺的问题, 进而增加了材料成本和电力成本。因此, 开发低Ir载量、 高活性和稳定性间距, 且能够满足PEMWE设备中大电流密度和长期运行要求的OER催化剂是十分必要的。这些目标的实现需要深入理解酸性OER机制、明晰材料设计方法, 并建立可靠的性能评估指标(特别是对耐久性的评估)。综上,本文首先系统总结了目前被广泛接受的酸性OER活性表达机制(即吸附析出机制、 晶格氧氧化机制和多活性中心机制)和失活机制(即活性物种溶解、晶相和形态演化、 催化剂脱落和活性位点阻塞), 为催化剂的微观结构设计提供指导。其次, 我们讨论了最近报道的几类低铱OER催化剂, 包括多金属合金氧化物、 负载型催化剂、具有特殊空间结构的催化剂和单位点催化剂, 并重点描述低Ir催化剂中的性能如何得以调控以及其中潜在的构效关系。随后, 我们介绍了常用的催化剂稳定性评价指标、 催化剂失活表征技术以及模拟PEMWE实际操作条件的催化剂寿命测试方法,希望为催化剂筛选提供依据。最后, 针对未来可用于PEMWE体系的低铱OER催化剂的探索提出了一些可行建议。  相似文献   

8.
一个高效经济的氧析出反应(OER)催化剂是大范围应用太阳能转化能源的关键.在众多有潜力的OER催化剂中,金属氢氧化物,尤其是FeOOH表现出很高的OER活性.我们采用DFT+U研究了γ-FeOOH(010)表面上OER反应机理;得到了OH– 和空穴对的化学势,并将OH–阴离子包含在反应机理中,以此来说明碱性条件下阳极的OER过程.随后分析了催化剂中OH-,O-和Fe-终止的表面上OER反应路径.含有OH-,O-终止的表面上,O2分子是通过OH与表面氧物种(–OH*和–O*)反应,或二个表面氧物种相结合而形成的.在Fe-终止的表面上,O2只能通过首先在Fe位上吸附OH而形成.不同形式表面上O2析出的化学势决定步骤取决于每个路径中基元步骤自由能的变化.结果表明,O2的形成需要重建表面Fe位,因此,有利于部分暴露Fe位的条件也将促进O2的形成.  相似文献   

9.
Herein we report the vital role of spin polarization in proton-transfer-mediated water oxidation over a magnetized catalyst. During the electrochemical oxygen evolution reaction (OER) over ferrimagnetic Fe3O4, the external magnetic field induced a remarkable increase in the OER current, however, this increment achieved in weakly alkaline pH (pH 9) was almost 20 times that under strongly alkaline conditions (pH 14). The results of the surface modification experiment and H/D kinetic isotope effect investigation confirm that, at weakly alkaline pH, during the nucleophilic attack of FeIV=O by molecular water, the magnetized Fe3O4 catalyst polarizes the spin states of the nucleophilic attacking intermediates. The spin-enhanced singlet O−H cleavage and triplet O−O bonding occur synergistically, which promotes the O2 generation more significantly than the strongly alkaline case involving only spin-enhanced O−O bonding.  相似文献   

10.
Developing efficient and affordable electrocatalysts for the sluggish oxygen evolution reaction (OER) remains a significant barrier that needs to be overcome for the practical applications of hydrogen production via water electrolysis, transforming CO2 to value-added chemicals, and metal-air batteries. Recently, hydroxides have shown promise as electrocatalysts for OER. In situ or operando techniques are particularly indispensable for monitoring the key intermediates together with understanding the reaction process, which is extremely important for revealing the formation/OER catalytic mechanism of hydroxides and preparing cost-effective electrocatalysts for OER. However, there is a lack of comprehensive discussion on the current status and challenges of studying these mechanisms using in situ or operando techniques, which hinders our ability to identify and address the obstacles present in this field. This review offers an overview of in situ or operando techniques, outlining their capabilities, advantages, and disadvantages. Recent findings related to the formation mechanism and OER catalytic mechanism of hydroxides revealed by in situ or operando techniques are also discussed in detail. Additionally, some current challenges in this field are concluded and appropriate solution strategies are provided.  相似文献   

11.
The reaction kinetics of spin-polarized oxygen evolution reaction (OER) can be enhanced by ferromagnetic (FM) catalysts under an external magnetic field. However, applying a magnetic field necessitates additional energy consumption and creates design difficulties for OER. Herein, we demonstrate that a single-domain FM catalyst without external magnetic fields exhibits a similar OER increment to its magnetized multi-domain one. The evidence is given by comparing the pH-dependent increment of OER on multi- and single-domain FM catalysts with or without a magnetic field. The intrinsic activity of a single-domain catalyst is higher than that of a multi-domain counterpart. The latter can be promoted to approach the former by the magnetization effect. Reducing the FM catalyst size into the single-domain region, the spin-polarized OER performance can be achieved without a magnetic field, illustrating an external magnetic field is not a requirement to reap the benefits of magnetic catalysts.  相似文献   

12.
A mixture electrolyte based on dimethyl sulfoxide (DMSO) and 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMP][NTf2], with excellent reversibility of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been reported for Li–O2 batteries. The effect of the mixture electrolyte on current density, oxygen solubility, diffusion coefficient and oxygen reduction reaction (ORR) mechanism was investigated. The presence of [BMP][NTf2] increases the solubility of oxygen and while DMSO improves the reversibility of ORR and OER by facilitating the solubility of Li2Ox. Cyclic voltammetric studies showed that mixed electrolyte showed significantly enhanced current density and reversibility for ORR and OER compared to pure DMSO or [BMP][NTf2].  相似文献   

13.
Developing clean and sustainable energies as alternatives to fossil fuels is in strong demand within modern society. The oxygen evolution reaction (OER) is the efficiency-limiting process in plenty of key renewable energy systems, such as electrochemical water splitting and rechargeable metal–air batteries. In this regard, ongoing efforts have been devoted to seeking high-performance electrocatalysts for enhanced energy conversion efficiency. Apart from traditional precious-metal-based catalysts, nickel-based compounds are the most promising earth-abundant OER catalysts, attracting ever-increasing interest due to high activity and stability. In this review, the recent progress on nickel-based oxide and (oxy)hydroxide composites for water oxidation catalysis in terms of materials design/synthesis and electrochemical performance is summarized. Some underlying mechanisms to profoundly understand the catalytic active sites are also highlighted. In addition, the future research trends and perspectives on the development of Ni-based OER electrocatalysts are discussed.  相似文献   

14.
A new approach is proposed in order to perform electrochemical oxidation of organics by working under galvanostatic conditions with the potential ‘buffered’ by the competing side reaction of oxygen evolution (OER). According to this process the working potential is fixed by the nature of electrode material and is buffered during organics oxidation by the side reaction of OER. This principle has been used for the selective oxidation of some model organic compounds on Ti/IrO2 anode.  相似文献   

15.
电催化水分解反应是可以实现规模化制取氢气的一种重要绿色无污染的手段,但是其效率极大地受制于阳极析氧反应. 因此,发展廉价、高效的析氧反应催化剂是当下的研究热点. 通过分析决定析氧反应催化活性的因素,本综述总结了低成本、高效、稳定的析氧电催化剂的一些通用设计与制备策略,包括:1)通过电子结构调控、结晶度调控、相调控、缺陷位调控以及自旋态调控提升单个催化活性位点的本征催化活性;2)设计与构筑先进电极结构,以实现活性位点数量最大化,获得大电流下稳定的电极材料. 进而,选取了一些具有代表性的高效析氧催化剂作为例子来阐述这些策略的实用性. 最后,对高效、可在大电流密度下稳定工作的析氧催化剂的理性设计、可控制备和发展方向提出了展望,以期为新型高性能析氧催化剂的设计提供指导.  相似文献   

16.
Transition metal single atom electrocatalysts (SACs) with metal-nitrogen-carbon (M−N−C) configuration show great potential in oxygen evolution reaction (OER), whereby the spin-dependent electrons must be allowed to transfer along reactants (OH/H2O, singlet spin state) and products (O2, triplet spin state). Therefore, it is imperative to modulate the spin configuration in M−N−C to enhance the spin-sensitive OER energetics, which however remains a significant challenge. Herein, we report a local field distortion induced intermediate to low spin transition by introducing a main-group element (Mg) into the Fe−N−C architecture, and decode the underlying origin of the enhanced OER activity. We unveil that, the large ionic radii mismatch between Mg2+ and Fe2+ can cause a FeN4 in-plane square local field deformation, which triggers a favorable spin transition of Fe2+ from intermediate (dxy2dxz2dyz1dz21, 2.96 μB) to low spin (dxy2dxz2dyz2, 0.95 μB), and consequently regulate the thermodyna-mics of the elementary step with desired Gibbs free energies. The as-obtained Mg/Fe dual-site catalyst demonstrates a superior OER activity with an overpotential of 224 mV at 10 mA cm−2 and an electrolysis voltage of only 1.542 V at 10 mA cm−2 in the overall water splitting, which outperforms those of the state-of-the-art transition metal SACs.  相似文献   

17.
《中国化学快报》2023,34(7):107812
Superior bifunctional electrocatalysts with ultra-high stability and excellent efficiency are crucial to boost the oxygen evolution reaction (OER) and the hydrogen evolution reduction (HER) in the overall water splitting (OWS) for the sustainable production of clean fuels. Herein, comprehensive density functional theory (DFT) computations were performed to explore the potential of several single transition metal (TM) atoms anchored on various S-doped black phosphorenes (TM/Snx-BP) for bifunctional OWS electrocatalysis. The results revealed that these candidates display good stability, excellent electrical conductivity, and diverse spin moments. Furthermore, the Rh/S12-BP catalyst was identified as an eligible bifunctional catalyst for OWS process due to the low overpotentials for OER (0.43 V) and HER (0.02 V), in which Rh and its adjacent P atoms were identified as the active sites. Based on the computed Gibbs free energies of OH*, O*, OOH* and H*, the corresponding volcano plots for OER and HER were established. Interestingly, the spin moments and the charge distribution of the active sites determine the catalytic trends of OER and HER. Our findings not only propose a promising bifunctional catalyst for OWS, but also widen the potential application of BP in electrocatalysis.  相似文献   

18.
非晶非贵金属催化剂的研究进展及展望   总被引:1,自引:0,他引:1  
近年来电解水产氢作为一种具有前景的制备及储存可再生能源的方法受到了各界的广泛关注.在此过程中,电解水催化剂是提高能源转换效率的关键.优秀的催化剂应具备高催化活性、高稳定性、低成本以及可大规模生产等性质.科研工作者对电解水的两部分反应,即析氢反应以及析氧反应均进行了广泛及深入的研究.目前,贵金属催化剂,如铂基、钌基催化剂的催化活性要高于其他元素催化剂,但由于其价格昂贵,储量较少使得贵金属催化剂无法得到大规模应用,因此发展非贵金属催化剂对绿色能源的发展具有重要意义.一般而言,催化剂的结晶度越高,其催化活性越好,而近年来非晶催化剂以其更高的催化活性位密度也越来越受到人们的重视.同时,非晶催化剂的成分更加灵活,相比晶体催化剂来说非晶催化剂可以在更大范围内对成分进行调节.此外,非晶催化剂的制备通常都在较为温和的反应条件下进行,这也能够降低生成成本,促进其工业化发展.在这篇综述里我们介绍了电解水反应的基本原理,总结了近期非晶析氢、析氧以及双功能催化剂的研究进展.并随后探讨了电解水反应目前的难点并对非晶催化剂的制备进行了展望.  相似文献   

19.
Heteroatom doping has emerged as a highly effective strategy to enhance the activity of metal-based electrocatalysts toward the oxygen evolution reaction (OER). It is widely accepted that the doping does not switch the OER mechanism from the adsorbate evolution mechanism (AEM) to the lattice-oxygen-mediated mechanism (LOM), and the enhanced activity is attributed to the optimized binding energies toward oxygen intermediates. However, this seems inconsistent with the fact that the overpotential of doped OER electrocatalysts (<300 mV) is considerably smaller than the limit of AEM (>370 mV). To determine the origin of this inconsistency, we select phosphorus (P)-doped nickel-iron mixed oxides as the model electrocatalysts and observe that the doping enhances the covalency of the metal-oxygen bonds to drive the OER pathway transition from the AEM to the LOM, thereby breaking the adsorption linear relation between *OH and *OOH in the AEM. Consequently, the obtained P-doped oxides display a small overpotential of 237 mV at 10 mA cm−2. Beyond P, the similar pathway transition is also observed on the sulfur doping. These findings offer new insights into the substantially enhanced OER activity originating from heteroatom doping.  相似文献   

20.
The oxygen evolution reaction (OER) is a sluggish electrocatalytic reaction in solid oxide electrolysis cells (SOECs) at high temperatures (600–850 °C). Perovskite oxide has been widely investigated for catalyzing the OER; however, the formation of cation‐enriched secondary phases at the oxide/oxide interface blocks the active sites and decreases OER performance. Herein, we show that the Au/yttria‐stabilized zirconia (YSZ) interface possesses much higher OER activity than the lanthanum strontium manganite/YSZ anode. Electrochemical characterization and density functional theory calculations suggest that the Au/YSZ interface provides a favorable path for OER by triggering interfacial oxygen spillover from the YSZ to the Au surface. In situ X‐ray photoelectron spectroscopy results confirm the existence of spillover oxygen on the Au surface. This study demonstrates that the Au/YSZ interface possesses excellent catalytic activity for OER at high temperatures in SOECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号