首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The generation of oxidative products in the newly investigated foaming system was improved by a discharge between a high voltage multineedle electrode and a dielectric covered plate electrode. A uniformity of the discharge was observed. The presence of alumina dielectric seems to be responsible of the homogenous spatial distribution of the discharge. The absolute power and energy of the discharge was determined. Besides, in larger gap space the foam quality was improved.This way of oxidant's generation, which might be prospective for the treatment of exhaust gas and wastewater, has not been investigated by the other researchers' groups as yet. During the laboratory test 875 ppm of gaseous ozone, 0.5 mg/l of dissolved ozone and 62 mg/l of hydrogen peroxide was obtained at 14 kV of applied voltage and 5 l/min of oxygen gas flow in the present configuration used for the discharge generation. The average yield of gaseous ozone production ranged 55 gO3/kWh.  相似文献   

2.
Plasma actuators for flow control are intensively studied, but the production of ozone by the surface dielectric barrier discharge used in the actuators has never been quantified. Since ozone is harmful to human health, it is important to quantify its production for an application of this type of actuator on a land vehicle. This paper describes an experimental study to measure the concentration of ozone produced by an actuator with different parameters: amplitude and frequency of the applied high voltage, and the electrode configuration (shape, spacing and length). The results show that, under our experimental conditions, the production of ozone is directly proportional to the power dissipation. The production rate was measured at 21 g/kWh. Although the rate is much lower than that of an industrial ozonizer, it is still far from being negligible and should be taken into account for the future application of these actuators.  相似文献   

3.
The yield of ozone in barrier discharges in oxygen–nitrogen mixtures containing 0.001 to 40% of nitrogen is investigated experimentally. Phenomena of the nonstationarity of processes of ozone generation that differ from the known ozone-zero phenomenon (OZP) apparent in the reduced efficiency of ozone generation in very high purity oxygen at long periods (from hours to tens of hours) of ozonator operation are found. It is established that the characteristic times (from minutes to tens of minutes) of ozone attaining stationary values after changes in the discharge parameters indicate slow adjustment of the surface condition of insulators and thus the heterogeneous decay of ozone to more rapidly changing flows of neutral and charged particles from gas discharge plasma on the surfaces of dielectrics. The possibility of such a scenario is confirmed using a new analytical approach and numerical calculations of the plasma–chemical kinetics of N2/O2 mixtures presented in the accompanying theoretical study.  相似文献   

4.
Ozone reacts with n-aldehydes (n=4-10), benzaldehyde, ethanol, isopropanol and n-propanol adsorbed on a dual-bed graphitized carbon-carbon molecular sieve adsorbent cartridge. Destruction of n-aldehydes increases with n number and with ozone concentration. In some sampling experiments both generation and destruction of n-aldehydes by ozone are observed. In field experiments the results of sample analysis for n-aldehydes and benzaldehyde are frequently not proportional to sample volume whereas results for toluene and isoprene, and sometimes for total carbon, are. A simple theory is developed to simulate the net result of three processes: the adsorption of compounds from an air stream onto a solid adsorbent, the generation of compounds by reaction of ozone with materials upstream of or on the adsorbent, and the destruction by ozone of pre-existing compounds and compounds adsorbed from the sample stream. The use of distributed volume pairs is recommended as a way to identify loss of sample integrity during air monitoring experiments.  相似文献   

5.
Recently, ozone concentrations have increased dramatically as a result of vehicle usage in metropolitan areas. Ozone precursors are composed of hydrocarbons of organic compounds. Because hydrocarbons are indicative of ozone formation, they need to be monitored in ambient air. Since ozone precursor are present at very low levels (from ppb to ppt) in ambient air, they are difficult to analyze accurately. This study investigates ozone precursors in ambient air. The main purpose of this study is to compare analytical methods for the measurement of ozone precursors in atmosphere. Two measurement methods were evaluated using canister (Silco-canister) and adsorbent (300-mg Carbopack B+150-mg Carbosieve SIII) tube. Differences in measurements for total ozone precursor emissions were 54.1% between the adsorption tube and canister-GC/MS, 51.1% between adsorption tube and canister-GC/FID, and 16.3% between canister-GC/MS and canister-GC/FID.  相似文献   

6.
We investigated nitrogen monoxide, nitrogen dioxide and ozone generation for corona-like dielectric barrier discharge in a stationary magnetic field with airflow. The magnetic field was produced by the permanent magnet. We showed that nitrogen monoxide could be easily generated at relatively low voltages, by application of a magnetic field on the hollow needle to mesh with a dielectric barrier discharge. For higher voltages generation of nitrogen monoxide falls to zero, and generation of nitrogen dioxide and ozone with increasing voltage increases. We also demonstrated that simultaneous application of the magnetic field with airflow through the needle electrode affects the transition of the discharge from the high to the low voltage regime. This transition is accompanied by important changes in the production of nitrogen oxides and ozone. Changes in the discharge regime are reflected by changes in the voltage–current waveforms. The obtained results could be interesting for various biomedical applications or bacterial decontamination of surfaces.  相似文献   

7.
Fabrication of new high-energy batteries is an imperative for both Li- and Na-ion systems in order to consolidate and expand electric transportation and grid storage in a more economic and sustainable way. Current research appears to focus on negative electrodes for high-energy systems that will be discussed in this review with a particular focus on C, Si, and P. This new generation of batteries requires the optimization of Si, and black and red phosphorus in the case of Li-ion technology, and hard carbons, black and red phosphorus for Na-ion systems. At present, Si and hard carbons are closer to their deployment in industry while new phosphorus-based materials still comprise complicated synthetic methods and need a more thorough study before reaching this final step in application.  相似文献   

8.
Skin chronic wounds are associated with a state of persistent inflammation and often with infection, originating a specific microenvironment characterized by increased temperature, alkaline pH, elevated enzymatic activity, and high levels of reactive oxygen species (ROS). These alterations can be explored as intrinsic triggers in the design of stimuli-responsive biomaterials for the release of bioactive molecules at the wound microenvironment. Stimuli-responsive biomaterials may not only prolong the bioactivity of the therapeutic agents but also synchronize it with the healing stages, tuning the wound treatment. In addition, the high activity of enzymes, such as lysozyme in infected chronic wounds, as well as the shift to a more alkaline pH may be used as biomarkers for early detection of infected and/or non-healing wounds. Overall, although a few shortcomings still need to be addressed before clinical translation, the bioengineered smart formulations highlighted in this review stand out as a new generation of therapies to manage skin chronic wounds.  相似文献   

9.
微流控芯片液滴生成与检测技术研究进展   总被引:1,自引:0,他引:1  
微流控芯片液滴技术是一种操控微小体积液体的新技术,既可实现高通量微观样本的生成及控制,也可进行独立液滴的操作.分散的微液滴单元可作为理想的微反应器,在生物医药中的药物筛选、材料筛选和高附加值微颗粒材料合成领域展现出巨大的应用潜力.液滴微流控芯片是利用流体剪切力的改变,使互不相溶的两相流体在其界面处生成稳定、有序的液滴,...  相似文献   

10.
Biodiesel being one of the most promising renewable biofuels has seen rapid increase in production capacity due to high demand for diesel replacement; along with oversupply of its by-product, crude glycerol. Developing new industrial usage for glycerol is essential to defray the cost and sustainability of biodiesel industry and to promote the biodiesel industrialization. One of the approaches is by the transformation of glycerol into a liquid, referred as bio-oil through pyrolysis technology. Bio-oils produced by pyrolysis processes can be upgraded to produce transportation fuels or for power generation. However, current state of pyrolysis technologies are still major hurdles their development with respect to its commercial applications. Recently, microwave technology has attracted considerable attention as effective method for significantly reducing reaction time, improving the yields and selectivity of target products. Hence, this review strives extensively towards addressing the application of microwave-assisted technology applied to the pyrolysis process as a way of cost-effective and operationally feasible processes to directly utilize crude glycerol. The present review will focus on the pyrolyzed liquid product (bio-oil) derived by employing the microwave-assisted pyrolysis method. This review concludes that microwave-assisted glycerol conversion technology is a promising option as an alternative method to conventional glycerol conversion technology.  相似文献   

11.
This study presents an advanced ozone production process using the solid polymer electrolyte (SPE) technique, similar to the fabrication of proton exchange membrane fuel cell (PEMFC) membrane electrode assembly (MEA). Tungsten carbide and platinum on carbon black are coated on anode and cathode sides of a polymer membrane (Du Pont), respectively, to produce high concentration of ozone water. The water electrolysis of ozone generation requires a higher voltage than that of hydrogen production. On one hand, tungsten carbide, which is a platinum-like behavior electrocatalyst, plays a key role in preventing the MEA from corroding or oxidizing under high voltage. On the other hand, the carbon paper is replaced by a titanium porous disc to bear higher voltage. Moreover, an outstanding electronic control system can produce 1.37 ppm ozone water at atmosphere by adjusting the voltage range (6–10 V) with a current set to the maximum of 3 A for a household demand of ozone water generation.  相似文献   

12.
Cyclic ozone (O3) has not been isolated so far, despite its computed kinetic persistence. Possibilities of "trapping" this molecule (or the valence-isoelectronic cyclic thiozone, S3) in transition metal complexes are investigated in this paper. Candidates were constructed, first using the 18-electron rule as a guide and then optimizing the structures with the DFT-B3LYP method. A variety of structures result: oxo-peroxo species, di-sigma- and pi-bonded open ozone complexes, some eta1 and eta2 cyclic ozone complexes, and a few bona fide eta3 cyclic O3 and S3 complexes. MLn fragments suitable for complex formation would need to contain very strong pi-acceptor ligands. Nitrosyl ligands were chosen to minimize an energy mismatch between the O3 donor orbitals and the MLn acceptor orbitals. On this basis, the existence of the complexes [S3W(NO)3]3+, [O3M(NO)3]3+ (M = Cr, Mo, W, Fe, Ru, Os), and [S3W(NO)2(CO)]2+ containing cyclic O3 and S3 is suggested. In another approach, facing up to the oxidizing power of O3, potential systems were built from late transition metals in high oxidation states, and also d0 early transition metal centers.  相似文献   

13.
In this study, a traditional tubular reactor and an amplitude-modulated AC power supply were employed to develop a unique practical ozone generator with a widely adjustable ozone concentration and simultaneously a constant ozone yield. The characteristics regarding discharge and ozone generation in oxygen were experimentally investigated in detail. The amplitude-modulated AC waveform consisted of TON (burst of four consecutive AC cycles) and TOFF with a duty cycle of 0.4. The experimental results show that a unique ozone generator can be developed through changing the applied voltage amplitude when an amplitude-modulated AC power supply producing periodic bursts of several consecutive AC cycles during the TON period is used. A quite high and stable ozone yield of 165?±?16 g/kWh was achieved and a wide range of ozone concentrations could be obtained. Moreover, we observed a very interesting phenomenon that the discharge energy and voltage peak for every AC cycle showed some difference, resulting from the accumulation and release of charge on the dielectric. The first AC cycle had the highest discharge energy and positive voltage peak as well as the lowest negative voltage peak, which was particularly obvious at a high energy density. Additionally, water cooling of the grounded electrode seemed to have a small influence on the basic electrical characteristics of the discharge and had a positive effect on the concentration and yield of ozone due to a reduction in gas temperature in the discharge gap.  相似文献   

14.
The next generation High Temperature Low Sag Polymer Core Composite Conductors can experience harsh in-service environments including high temperature and highly concentrated ozone. In some extreme cases, it is possible that the conductors will experience temperatures of up to 180 °C and ozone concentrations as high as 1% (10,000 ppm). Therefore, the goal of this work was to understand the degradation mechanisms in a high temperature epoxy, which could be used in the conductors at temperatures as high as 140 °C in the presence of 1% ozone. Then, the combined aging data for the epoxy were compared to the aging results from room temperature aging in 1% ozone and aging in air at 140 and 180 °C. In addition, important but limited aging testing was also performed on a set of PCCC rods to verify some of the observations from the neat resin experiments. It was determined that the mass loss, volumetric shrinkage, and flexural strength reductions of the epoxy aged at 140 °C were driven almost entirely by temperature and that the effect of 1% ozone at that temperature can be thought of as insignificant for aging times up to 90 days. The composite rods displayed postcuring at 140 °C and were also unaffected by the presence of ozone at aging time lengths of 90 days. Up to this time aging the polymer and composite specimens in atmospheric 180 °C resulted in the most drastic changes in both physical and mechanical properties, except viscoelasticity where the polymer specimens aged at 140 °C with 1% ozone showed the greatest increase in the storage modulus. The least amount of degradation to the materials was found to occur after aging at room temperature in 1% ozone.  相似文献   

15.
A new intense oxidation process for water treatment in which oxidation with ozone is coupled to electrochemical processes is described, and the results from its application to water purification are presented along with the discussion of its practical implementation. The use of graphitized carbon materials for this process is explained and tested experimentally. The use of glassy carbon for the anode enables us to achieve very high (up to 25 vol %) concentrations of ozone in the generated ozone?oxygen mixture. The material used for the cathode—graphitized carbon cloth (GCC) reinforced with Ni allows different electrocatalytic processes to proceed on its developed surface, and combines the high sorption capacity of this cathode and potentialcontrolled selectivity of cathodic electrochemical processes.  相似文献   

16.
The accelerating development of technologies requires a significant energy consumption, and consequently the demand for advanced energy storage devices is increasing at a high rate. In the last two decades, lithium‐ion batteries have been the most robust technology, supplying high energy and power density. Improving cathode materials is one of the ways to satisfy the need for even better batteries. Therefore developing new types of positive electrode materials by increasing cell voltage and capacity with stability is the best way towards the next‐generation Li rechargeable batteries. To achieve this goal, understanding the principles of the materials and recognizing the problems confronting the state‐of‐the‐art cathode materials are essential prerequisites. This Review presents various high‐energy cathode materials which can be used to build next‐generation lithium‐ion batteries. It includes nickel and lithium‐rich layered oxide materials, high voltage spinel oxides, polyanion, cation disordered rock‐salt oxides and conversion materials. Particular emphasis is given to the general reaction and degradation mechanisms during the operation as well as the main challenges and strategies to overcome the drawbacks of these materials.  相似文献   

17.
臭氧的应用及产生技术   总被引:6,自引:0,他引:6  
主要阐述了臭氧的性质、用途及产生技术,并重点介绍了臭氧的用途和臭氧产生技术的现状。  相似文献   

18.
Currently, long-chain cellulose esters are not produced commercially because of high price, and since their preparation typically requires a large quantity of chemicals. To reduce the chemical consumption, cellulose reactivity needs to be increased without losing its quality. One way to increase the reactivity of cellulose is to decrease its molar mass in a controlled manner. In this study, we have synthesized cellulose esters with different side-chain length (C6–C18) in a homogeneous system using ozone molar mass-controlled cellulose. The target was to keep the degree of substitution as low as possible while still ensuring the suitability of cellulose esters for solvent casting. Thermal, barrier and mechanical properties were studied depending on cellulose fatty acid ester side-chain length. All our molar mass-controlled cellulose esters form optically transparent, flexible and heat-sealable films with good water barrier properties and are processable without the addition of an external plasticizer. Furthermore, the films have mechanical properties comparable to some generally used plastics. These good properties suggest that our molar mass-controlled cellulose esters could be potential candidates for various applications such as films and composites.  相似文献   

19.
A novel system based on reverse flow injection analysis with a gaseous diffusion step (GD-r-FIA) has been developed for the analysis of ozone. It includes an automatic microburet injection system. The ozone diffuses through a microporous membrane of polyvinylidene difluoride (PVDF) from the donor stream to the acceptor stream containing nitrite ions. The nitrite concentration in the acceptor solution decreases due to the ozone reduction reaction. In this way, a simple indirect measurement of the ozone concentration can be performed using the Griess–Ilosvay reaction for the nitrite ion. This correlates with the decrease in absorbance of the azoic dye formed with the ozone concentration in the donor stream. The system has been optimised by investigating the effect of the nitrite concentration in the acceptor stream on the diffusion flow. The optimum nitrite concentration was set at 0.250 ppm with a flow rate of 1.5 ml/min. The efficiency of the ozone diffusion through the membrane was only 4.4%. This affects the average sensitivity, which is low (0.0092±0.0012 AU/ppm), although the detection limit is similar to that obtained with other reported methods (0.03 ppm). The main advantage of the system reported here is that it has a linear range that is an order of magnitude broader than those observed for other GD-FIA systems. This is especially useful for continuous monitoring systems, since the residual ozone concentration is normally between 0.05 and 5.0 ppm. Additionally, using the reverse flow injection analysis (FIA) technique minimises chemical consumption and residue generation. Finally, the stability of the ozone solution and the repeatability and reproducibility of the method have been studied.  相似文献   

20.
Morin I  Askin SP  Schaeffer PM 《The Analyst》2011,136(22):4815-4821
The number of new Immuno-PCR technologies and applications is steadily growing as a result of a general need for more sensitive immunoassays for early detection of diseases. Although Immuno-PCR has been demonstrated to be superior to its immunoassay counterpart, it is still regarded as a challenging technology due to various problems arising from its increased detection power, such as high background noise as well as substantial batch-to-batch reproducibility issues. Current efforts have intensified to produce homogeneous universal protein-DNA conjugates to simplify this technology and render it more robust. We have recently developed a new quantitative Immuno-PCR (qIPCR) technology using the Tus-Ter-lock (TT-lock) interaction to produce homogeneous protein-DNA conjugates that can detect very small numbers of disease-related antibodies. We now report the further development of the TT-lock Immuno-PCR platform for the quasi universal quantitative detection of antigens and mammalian IgG. For this, Tus was fused to various IgG-binding proteins--i.e. protein G, protein L and their LG chimera--and self-assembled to the TT-lock-T template. These detection devices were then evaluated and applied in various direct and indirect Immuno-PCR formats. The direct TT-lock qIPCR could detect goat anti-GFP IgG at concentrations as low as 0.3 pM and total human IgG in serum samples with great sensitivity. Further indirect TT-lock qIPCR systems were developed that could detect 1 pM of GFP and 10 pM of measles nucleoprotein. In all cases, the superiority of the TT-lock Immuno-PCR was demonstrated in terms of sensitivity over an analogous Protein G-Peroxidase ELISA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号