首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The exploration of earth-abundant electrocatalysts with high performance for the oxygen evolution reaction (OER) is eminently desirable and remains a significant challenge. The composite of the metal-organic framework (MOF) Ni10Co-BTC (BTC = 1,3,5-benzenetricarboxylate) and the highly conductive carbon material ketjenblack (KB) could be easily obtained from the MOF synthesis in the presence of KB in a one-step solvothermal reaction. The composite and the pristine MOF perform better than commercially available Ni/NiO nanoparticles under the same conditions for the OER. Activation of the nickel-cobalt clusters from the MOF can be seen under the applied anodic potential, which steadily boosts the OER performance. Ni10Co-BTC and Ni10Co-BTC/KB are used as sacrificial agents and undergo structural changes during electrochemical measurements, the stabilized materials show good OER performances.  相似文献   

2.
The oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) have attracted increasing attention for the sake of clean, renewable, and efficient energy technologies in recent years. The design of ORR/OER bifunctional electrocatalysts is a challenging task in the promotion of highly efficient rechargeable metal-air batteries as well as regenerative fuel cells. Owing to the wide adaptability of different types and ratios of metals in the interlayer space as well as the adjustable interlayer distance, composite materials with layered double hydroxides (LDHs) and their derivatives have recently been registered as electrode materials and catalysts supports for various electrochemical reactions. This study examines the recent development of bifunctional electrocatalysts based on LDHs for ORR/OER to expand the application of LDHs in the field of energy storage and conversion. Various bifunctional electrocatalysts associated with LDHs are discussed in detail to improve their performance. Finally, existing problems and future prospects for improving the performance of LDHs bifunctional electrocatalysts are proposed.  相似文献   

3.
采用碳纤维超微电极分别研究了O_2在二甲基亚砜、乙腈和四甘醇二甲醚3种有机溶剂中的电化学反应,结果表明,当阳离子只含四丁胺离子时,反应呈可逆的一电子转移;而阳离子只含锂离子时,O_2的还原和氧化均经历了多电子转移过程.利用超导炭黑和乙炔黑制作粉末微电极进行电化学测试,结果表明,在这2种正极材料上,氧气还原反应(ORR)过程相似,氧气生成反应(OER)过程区别明显.此外,Tafel分析结果表明,对于不同有机溶剂和正极材料,O_2还原均经历了初始的一电子转移步骤.  相似文献   

4.
Electrochemical water splitting is a clean and sustainable process for hydrogen production on a large scale as the electrical power required can be obtained from various renewable energy resources. The key challenge in electrochemical water splitting process is to develop low-cost electrocatalysts with high catalytic activity for the hydrogen evolution reaction (HER) on the cathode and the oxygen evolution reaction (OER) on the anode. OER is the most important half-reaction involved in water splitting, which has been extensively studied since the last century and a large amount of electrocatalysts including noble and non-noble metal-based materials have been developed. Among them, transition metal borides and borates (TMBs)-based compounds with various structures have attracted increasing attention owing to their excellent OER performance. In recent years, many efforts have been devoted to exploring the OER mechanism of TMBs and to improving the OER activity and stability of TMBs. In this review, recent research progress made in TMBs as efficient electrocatalysts for OER is summarized. The chemical properties, synthetic methodologies, catalytic performance evaluation, and improvement strategy of TMBs as OER electrocatalysts are discussed. The electrochemistry fundamentals of OER are first introduced in brief, followed by a summary of the preparation and performance of TMBs-based OER electrocatalysts. Finally, current challenges and future directions for TMBs-based OER electrocatalysts are discussed.  相似文献   

5.
《中国化学快报》2020,31(9):2469-2472
The development of efficient and cost-effective electrocatalysts toward anodic oxygen evolution reaction (OER) is crucial for the commercial application of electrochemical water splitting. As the most promising electrocatalysts, the OER performances of nickel-iron-based materials can be further improved by introducing metalloid elements to modify their electron structures. Herein, we developed an efficient hybrid electrocatalyst with nickel-iron boride (NiFeB) as core and amorphous nickel-iron borate (NiFeBi) as shell (NiFeB@NiFeBi) via a simple aqueous reduction. The obtained NiFeB@NiFeBi exhibits a small overpotential of 237 mV at 10 mA/cm2 and Tafel slope of 57.65 mV/dec in 1.0 mol/L KOH, outperforming most of the documented precious-metal-free based electrocatalysts. Benefiting from the in situ formed amorphous NiFeBi layer, it shows excellent stability toward the oxygen evolution reaction (OER). These findings might provide a new way to design advanced precious-metal-free electrocatalysts for OER and the application of electrochemical water splitting.  相似文献   

6.
Designing cost-effective and efficient electrocatalysts plays a pivotal role in advancing the development of electrochemical water splitting for hydrogen generation. Herein, multifunctional active-center-transferable heterostructured electrocatalysts, platinum/lithium cobalt oxide (Pt/LiCoO2) composites with Pt nanoparticles (Pt NPs) anchored on LiCoO2 nanosheets, are designed towards highly efficient water splitting. In this electrocatalyst system, the active center can be alternatively switched between Pt species and LiCoO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Specifically, Pt species are the active centers and LiCoO2 acts as the co-catalyst for HER, whereas the active center transfers to LiCoO2 and Pt turns into the co-catalyst for OER. The unique architecture of Pt/LiCoO2 heterostructure provides abundant interfaces with favorable electronic structure and coordination environment towards optimal adsorption behavior of reaction intermediates. The 30 % Pt/LiCoO2 heterostructured electrocatalyst delivers low overpotentials of 61 and 285 mV to achieve 10 mA cm−2 for HER and OER in alkaline medium, respectively.  相似文献   

7.
Designing cost‐effective and efficient electrocatalysts plays a pivotal role in advancing the development of electrochemical water splitting for hydrogen generation. Herein, multifunctional active‐center‐transferable heterostructured electrocatalysts, platinum/lithium cobalt oxide (Pt/LiCoO2) composites with Pt nanoparticles (Pt NPs) anchored on LiCoO2 nanosheets, are designed towards highly efficient water splitting. In this electrocatalyst system, the active center can be alternatively switched between Pt species and LiCoO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Specifically, Pt species are the active centers and LiCoO2 acts as the co‐catalyst for HER, whereas the active center transfers to LiCoO2 and Pt turns into the co‐catalyst for OER. The unique architecture of Pt/LiCoO2 heterostructure provides abundant interfaces with favorable electronic structure and coordination environment towards optimal adsorption behavior of reaction intermediates. The 30 % Pt/LiCoO2 heterostructured electrocatalyst delivers low overpotentials of 61 and 285 mV to achieve 10 mA cm?2 for HER and OER in alkaline medium, respectively.  相似文献   

8.
Oxygen evolution reaction(OER) is a key process for electrochemical water splitting due to its intrinsic large overpotential. Recently, layered double hydroxides(LDHs), especially Ni Fe-LDH, have been regarded as highly performed electrocatalysts for OER in alkaline condition. Here we first present a new class of Ni La-LDH electrocatalyst synthesized by an electrochemical process for efficient water splitting. The as-prepared NiL a-LDH nanosheet arrays(NSAs) give remarkable electrochemical activity and durability under alkaline environments, with a low overpotential of 209 mV for OER to deliver a current density of 10 mA cm~(-2), surpassing most of previous reported LDHs eletrocatalysts. The presence of NiLa-LDH in this work extends the studies about LDHs-based electrocatalysts, which will benefit the development of electrochemical energy storage and conversion systems.  相似文献   

9.
Due to the increasing global energy demands, scarce fossil fuel supplies, and environmental issues, the pursued goals of energy technologies are being sustainable, more efficient, accessible, and produce near zero greenhouse gas emissions. Electrochemical water splitting is considered as a highly viable and eco-friendly energy technology. Further, electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) is a cleaner strategy for CO2 utilization and conversion to stable energy (fuels). One of the critical issues in these cleaner technologies is the development of efficient and economical electrocatalyst. Among various materials, metal-organic frameworks (MOFs) are becoming increasingly popular because of their structural tunability, such as pre- and post- synthetic modifications, flexibility in ligand design and its functional groups, and incorporation of different metal nodes, that allows for the design of suitable MOFs with desired quality required for each process. In this review, the design of MOF was discussed for specific process together with different synthetic methods and their effects on the MOF properties. The MOFs as electrocatalysts were highlighted with their performances from the aspects of hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and electrochemical CO2RR. Finally, the challenges and opportunities in this field are discussed.  相似文献   

10.
Herein, the effect of the alkali cation (Li+, Na+, K+, and Cs+) in alkaline electrolytes with and without Fe impurities is investigated for enhancing the activity of nickel oxyhydroxide (NiOOH) for the oxygen evolution reaction (OER). Cyclic voltammograms show that Fe impurities have a significant catalytic effect on OER activity; however, both under purified and unpurified conditions, the trend in OER activity is Cs+ > Na+ > K+ > Li+, suggesting an intrinsic cation effect of the OER activity on Fe‐free Ni oxyhydroxide. In situ surface enhanced Raman spectroscopy (SERS), shows this cation dependence is related to the formation of superoxo OER intermediate (NiOO?). The electrochemically active surface area, evaluated by electrochemical impedance spectroscopy (EIS), is not influenced significantly by the cation. We postulate that the cations interact with the Ni?OO? species leading to the formation of NiOO??M+ species that is stabilized better by bigger cations (Cs+). This species would then act as the precursor to O2 evolution, explaining the higher activity.  相似文献   

11.
Developing highly active,cost-effective,and environmental friendly oxygen evolution reaction(OER)electrocatalysts facilitates various(photo)electrochemical processes.In this work,Fe3N nanoparticles encapsulated into N-doped graphene nanoshells(Fe3N@NG)as OER electrocatalysts in alkaline media were reported.Both the experimental and theoretical comparison between Fe3 N@NG and Fe3N/NG,specifically including in situ Mossbauer analyses,demonstrated that the NG nanoshells improved interfacial electron transfer process from Fe3N to NG to form high-valence Fe4+ions(Fe4+@NG),thus modifying electronic properties of the outer NG shells and subsequently electron transfer from oxygen intermediate to NG nanoshells for OER catalytic process.Meanwhile,the NG nanoshells also protected Fe-based cores from forming OER inactive and insulated Fe2O3,leading to high OER stability.As a result,the as-formed Fe4+@NG shows one of the highest electrocatalytic efficiency among reported Fe-based OER electrocatalysts,which can as well highly improve the photoelectrochemical water oxidation when used as the cocatalysts for the Fe2O3 nanoarray photoanode.  相似文献   

12.
Developing high‐efficiency and affordable electrocatalysts for the sluggish oxygen evolution reaction (OER) remains a crucial bottleneck on the way to the practical applications of rechargeable energy storage technologies and water splitting for producing clean fuel (H2). In recent years, NiFe‐based materials have proven to be excellent electrocatalysts for OER. Understanding the characteristics that affect OER activity and determining the OER mechanism are of vital importance for the development of OER electrocatalysts. Therefore, in situ characterization techniques performed under OER conditions are urgently needed to monitor the key intermediates together with identifying the OER active centers and phases. In this Minireview, recent advances regarding in situ techniques for the characterization of NiFe‐based electrocatalysts are thoroughly summarized, including Raman spectroscopy, X‐ray absorption spectroscopy, ambient pressure X‐ray photoelectron spectroscopy, Mössbauer spectroscopy, Ultraviolet–visible spectroscopy, differential electrochemical mass spectrometry, and surface interrogation scanning electrochemical microscopy. The results from these in situ measurements not only reveal the structural transformation and the progressive oxidation of the catalytic species under OER conditions, but also disclose the crucial role of Ni and Fe during the OER. Finally, the need for developing new in situ techniques and theoretical investigations is discussed to better understand the OER mechanism and design promising OER electrocatalysts.  相似文献   

13.
The mechanism of oxygen evolution reaction (OER) is somehow related to that of the pseudocapacitance of metal oxide electrocatalysts in potentials lower than the OER standard potential. Although pseudocapacitance of metal oxide electrocatalysts is usually studied in the investigations of OER, this dependence is not profoundly inspected. During the pseudocapacitive behavior, some high valence cations are formed over a broad range of potential in an underpotential region before the formal redox potential. This is due to the exceptional activities of some sites, which are capable of further oxidation at the OER potential to form active sites for the OER electrocatalysis. Therefore, a well-defined pseudocapacitance is somehow a requirement for the OER performance. Almost all OER electrocatalysts reported in the literature display considerable pseudocapacitive behavior at the lower potentials. The corresponding pseudocapacitance explains the difference between the OER activities of IrO2 and RuO2. Here, the focus is on noble metals as the well-defined OER electrocatalysts, but the reasoning can be extended to other metal oxides. The electrochemical behaviors including the pseudocapacitance of almost all inexpensive OER electrocatalysts such as cobalt oxide, nickel oxide, etc. are similar to that of IrO2 as described here. Moreover, despite the high cost, noble metals still have the practical potentials for OER, subject to further enhancement in the OER efficiency or as additives in inexpensive electrocatalysts.  相似文献   

14.
Electrochemical oxidation of ammonia (NH3 and NH4 + ) on boron-doped diamond (BDD) electrode was studied using differential electrochemical mass-spectrometry (DEMS) and chronoamperometry. Electro-oxidation of ammonia induces inhibition of the oxygen evolution reaction (OER) due to adsorption of the ammonia oxidation products on the BDD surface. The inhibition of the OER enhances ammonia electro-oxidation, which becomes the main reaction. The amino radicals, formed during ammonia oxidation, trigger a reaction chain in which molecular oxygen dissolved in solution is involved in the ammonia electro-oxidation. Nitrogen, nitrous oxide, and nitrogen dioxide were detected as the ammonia oxidation products, with nitrogen being the main gaseous product of the oxidation.  相似文献   

15.
A new approach is proposed in order to perform electrochemical oxidation of organics by working under galvanostatic conditions with the potential ‘buffered’ by the competing side reaction of oxygen evolution (OER). According to this process the working potential is fixed by the nature of electrode material and is buffered during organics oxidation by the side reaction of OER. This principle has been used for the selective oxidation of some model organic compounds on Ti/IrO2 anode.  相似文献   

16.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in aprotic solvents are elementary reactions for the discharging and charging processes on the cathode of the lithium-oxygen batteries, respectively. Understanding the mechanisms of these reactions at a molecular level has now become a bottleneck that hinders the development of the battery. This short article briefly reviews recent progresses in the studies of the ORR/OER mechanism in aprotic solvents. Two reaction mechanisms, the electrochemical pathway and chemical (disproportionation) pathway, will be discussed with their contribution to the ORR process on the cathode surface. Furthermore, the origin of the OER overpotential will also be discussed. The solutions to reduce the OER overpotential are noted with development of redox mediators.  相似文献   

17.
This paper presents a preliminary structural and interfacial study of the iron chalcogenide glass [i.e., Fex(Ge28Sb12Se60)100−x] ion-selective electrode (ISE) using small angle neutron scattering (SANS) and electrochemical impedance spectroscopy (EIS). SANS detected variations in the neutron scattering as a function of iron content in the chalcogenide glass. Furthermore, a change in the chalcogenide glass structure was observed at elevated iron dopant levels. Conversely, EIS was used to show that the iron chalcogenide membrane comprises various time constants, and the interfacial charge transfer reaction depends on the membrane iron content. Equivalent circuit modeling revealed that the charge transfer resistance decreases at elevated iron levels, and this may be related to the presence of iron defects in the glass. It is proposed that the iron chalcogenide membrane comprises an iron nanostructural network embedded in the amorphous matrix, and this directly influences the electrical conductivity and concomitant electrochemical reactivity of the glass.  相似文献   

18.
Earth-abundant transition metal-based catalysts have been extensively investigated for their applicability in water electrolysers to enable overall water splitting to produce clean hydrogen and oxygen. In this study a Fe−Co based catalyst is electrodeposited in 30 seconds under vigorous hydrogen evolution conditions to produce a high surface area material that is active for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). This catalyst can achieve high current densities of 600 mAcm−2 at an applied potential of 1.6 V (vs RHE) in 1 M NaOH with a Tafel slope value of 48 mV dec−1 for the OER. In addition, the HER can be facilitated at current densities as high as 400 mA cm−2 due to the large surface area of the material. The materials were found to be predominantly amorphous but did contain crystalline regions of CoFe2O4 which became more evident after the OER indicating interesting compositional and structural changes that occur to the catalyst after an electrocatalytic reaction. This rapid method of creating a bimetallic oxide electrode for both the HER and OER could possibly be adopted to other bimetallic oxide systems suitable for electrochemical water splitting.  相似文献   

19.
Hollow nanostructures have attracted increasing research interest in electrochemical energy storage and conversion owing to their unique structural features. However, the synthesis of hollow nanostructured metal phosphides, especially nonspherical hollow nanostructures, is rarely reported. Herein, we develop a metal–organic framework (MOF)‐based strategy to synthesize carbon incorporated Ni–Co mixed metal phosphide nanoboxes (denoted as NiCoP/C). The oxygen evolution reaction (OER) is selected as a demonstration to investigate the electrochemical performance of the NiCoP/C nanoboxes. For comparison, Ni–Co layered double hydroxide (Ni–Co LDH) and Ni–Co mixed metal phosphide (denoted as NiCoP) nanoboxes have also been synthesized. Benefiting from their structural and compositional merits, the as‐synthesized NiCoP/C nanoboxes exhibit excellent electrocatalytic activity and long‐term stability for OER.  相似文献   

20.
The oxygen evolution reaction (OER) is an enabling process for technologies in the area of energy conversion and storage, but its slow kinetics limits its efficiency. We performed an electrochemical evaluation of 14 different perovskites of variable composition and stoichiometry as OER electrocatalysts in alkaline media. We particularly focused on improved methods for a reliable comparison of catalyst activity. From initial electrochemical results we selected the most active samples for further optimization of electrode preparation and testing. An inverted cell configuration facilitated gas bubble detachment and thus minimized blockage of the active surface area. We describe parameters, such as the presence of specific cations, stoichiometry, and conductivity, that are important for obtaining electroactive perovskites for OER. Conductive additives enhanced the current and decreased the apparent overpotential of OER for one of the most active samples (La0.58Sr0.4Fe0.8Co0.2O3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号