首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary An optimization strategy for the separation of a small number of peptides from a complex biological sample by two-dimensional liquid chromatography is presented. Ion-exchange chromatography is followed by reversed-phase separation. The ion-exchange separation is performed with a step gradient which admits a high sample load and simplifies instrumentation. The reversed-phase separation complements the first dimension with a different retention mechanism and higher resolution by linear gradient elution.Chromatographic theory is combined with experimental design to find separation conditions, for both dimensions, that allow the fastest gradient in the second dimension, giving short separation time, low detection limits and high load capacity. This is illustrated by the separation of a peptide from rat brain tissue, with a simple off-line arrangement. The strategy presented is useful in both analytical and preparative applications, and is widely applicable as it does not rely on special instrumentation or extensive knowledge of the sample.Dedicated to Professor Leslie S. Ettre on the occasion of his 70th birthday.  相似文献   

2.
The experimental effects of sampling time on the resolving power of on-line LC×LC were investigated. The first dimension gradient time ((1)t(g)) and sampling time (t(s)) were systematically varied ((1)t(g)=5, 12, 24 and 49 min; t(s)=6, 12, 21 and 40s). The resolving power of on-line LC×LC was evaluated in terms of two metrics namely the numbers of observed peaks and the effective 2D peak capacities obtained in separations of extracts of maize seeds. The maximum effective peak capacity and number of observed peaks of LC×LC were achieved at sampling times between 12 and 21s, at all first dimension gradient times. In addition, both metrics showed that the "crossover" time at which fully optimized 1DLC and LC×LC have equal resolving power varied somewhat with sampling time but is only about 5 min for sampling times of 12 and 21s. The longest crossover time was obtained when the sampling time was 6s. Furthermore, increasing the first dimension gradient time gave large improvements in the resolving power of LC×LC relative to 1DLC. Finally, comparisons of the corrected and effective 2D peak capacities as well as the number of peaks observed showed that the impact of the coverage factor is quite significant.  相似文献   

3.
Comprehensive two-dimensional liquid chromatography (2DLC) offers a number of practical advantages over optimized one-dimensional LC in peak capacity and thus in resolving power. The traditional “product rule” for overall peak capacity for a 2DLC system significantly overestimates peak capacity because it neglects under-sampling of the first dimension separation. Here we expand on previous work by more closely examining the effects of the first dimension peak capacity and gradient time, and the second dimension cycle times on the overall peak capacity of the 2DLC system. We also examine the effects of re-equilibration time on under-sampling as measured by the under-sampling factor and the influence of molecular type (peptide vs. small molecule) on peak capacity. We show that in fast 2D separations (less than 1 h), the second dimension is more important than the first dimension in determining overall peak capacity and conclude that extreme measures to enhance the first dimension peak capacity are usually unwarranted. We also examine the influence of sample types (small molecules vs. peptides) on second dimension peak capacity and peak capacity production rates, and how the sample type influences optimum second dimension gradient and re-equilibration times.  相似文献   

4.
丁坤  吴大朋  关亚风 《色谱》2010,28(12):1117-1122
二维液相色谱具有峰容量大、分辨率高、分析速度快等优点,已经成为复杂样品分离分析的重要工具。两种分离模式的转换通常需要经过一个特殊接口来完成,接口是二维液相色谱系统的核心,也是限制二维液相色谱应用的瓶颈;两种流动相不互溶时,接口尤为重要。本文针对二维液相色谱接口技术近期的发展和应用进行总结。引用文献51篇。  相似文献   

5.
Pharmaceutical formulations containing multiple active components challenge the development of analytical methods, especially as the individual active ingredients diverge in their physicochemical properties. Establishing specificity, especially peak purity, is one of the major evaluation criteria when developing a related substances method for drug substances or products. Fixed‐dose combination products may not be amenable to common strategies for assessing peak purity, such as performing orthogonal separations, due to the complexity of the separation and/or diversity of the active ingredients. An alternate approach to evaluating peak purity is demonstrated for a triple‐active component fixed‐dose combination product under development. A commercially available automated two‐dimensional liquid chromatography system was used to perform a selective comprehensive multidimensional separation of an active ingredient peak. The first dimension performed the drug product impurity/degradant profiling method; the second dimension assayed these fractions using the drug substance profiling method, which was pseudo‐orthogonal to the first dimension. A total of 14 targeted fractions were sampled across the first dimension main peak, with 11 containing detectable analytes and the remaining fractions bracketing the main peak. This degree of sampling allowed profiling of a coeluting degradant present at a 0.2% w/w level throughout the main peak.  相似文献   

6.
Online comprehensive two‐dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two‐dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two‐dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high‐molecular‐weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one‐dimensional liquid chromatography, two‐dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two‐dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two‐dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two‐dimensional liquid chromatography separations.  相似文献   

7.
The stationary-phase capacity concepts derived from linear capacity are discussed in connection with the needs of analytical, trace enrichment analysis and preparative chromatography and shown to be unsuited to them. A new concept based on stationary-phase saturation and called “available capacity” is proposed. It generalizes the ion-exchanger exchange capacity to adsorption and partition chromatography when the sampling solvent is the mobile phase. In linear elution chromatography the available capacity is proportional to the solute concentration Co and to the analytical capacity factor k′ for given Co and k′ values, it is independent of the nature of the solute. Furthermore, when both the concentrations and the analytical capacity factors (practically, for Co ≥ 1 M and k′ ≥ 10, respectively) are high, the available capacity reaches a value roughly independent of Co and k′, called “maximum available capacity” and related only to the number of sites available on the stationary phase. Numerous measurements were made in ion-exchange, adsorption, and reversed-phase chromatography. For solutes having a single polar functional group interacting with the stationary phase, the orders of magnitude of the maximum available capacity are 1.2 mmole g?1 for a classical silica gel (Partisil 5 μm, 400m?2 g?1 with a water content of 2.7%); 1.8 mmole g?1 for the Lichroprep RP 8 octyl bonded silica (11.6% carbon content); 3.8 mmole g?1 for an anion exchanger resin of Dowex type.  相似文献   

8.
Summary The insufficient ability of one dimensional HPLC to separate complex mixtures such as environmental samples can be overcome by using two dimensional systems combining columns with alternative/orthogonal selectivities. Such a system for the separation of complex mixtures of explosives, their by-products and degradation products from environmental samples was developed and evaluated. It makes use of the different retention characteristics of an alkyl modified silica and a safrol modified silica in the reversed phase mode. The high peak capacity of two dimensional systems predicted by theory was realized employing a flexible switching technique and utilizing differences in the elution strength of the mobile phases. Thus, peak compression on the head of the second column was exploited. The efficiency of the two dimensional system was demonstrated for the separation of a complex mixture of nitroaromatic reference compounds. Furthermore, the system was applied to separate and identify nitro and nitroamino organic compounds in a groundwater sample from a former ammunition plant. Presented at: Balaton Symposium on High-Performance Separation Methods, Siófok Hungary, September 3–5, 1997  相似文献   

9.
In this article, an integrated approach for prediction and optimization in ion chromatography (IC) was presented. The approach provides a fast and reliable insight in the elution behavior of an IC system. The predictions are based on a mathematical model that predicts ion retentions (for both isocratic and gradient modes) by using an empirical isocratic model. Other chromatographic values significant for the optimal elution conditions (resolution, peak asymmetry) are calculated quickly and easily from the predicted retention values of characteristic points of a chromatographic peak. Every day, IC users might find this approach a suitable tool for finding optimal IC elution conditions in a given system.  相似文献   

10.
The experimental technique of mass spectrometric tracer pulse chromatography was used to study the effect of the sorption of eluent components by a C18-bonded silica RPLC packing on the retention of a series of test analytes during isocratic and gradient elution experiments. The analytes of interest were a substituted phenol, a substituted nitroaniline, an anti-malaria drug, tetrahydrofuran, and methanol. The eluent used was a mixture of acetonitrile and water. The solutes and isotopically labeled eluent components were injected at fixed time intervals during each gradient run. The mass specific detector allowed the assignment of individual analyte peaks even when there was overlap in the chromatograms from successive injections. Thus, the retention time of each analyte could be determined as a function of gradient slope and initial eluent composition at the time of each injection. Experimental gradient retention time data were then compared with the calculated results from two theoretical models. The first model assumed the velocity of the mobile phase and eluent were equal. The second and most realistic model assumed the velocity of the eluent was less than the velocity of the mobile phase due to the uptake of eluent by the stationary phase. Gradient retention times predicted by the two models were reasonably accurate with the sorption model giving slightly more accurate values. Inverse calculations, i.e., calculation of isocratic retention factors from gradient elution data were also carried out with very similar results. That is, the model allowing for the uptake of eluent was slightly more accurate than the model assuming no eluent-stationary phase interaction.  相似文献   

11.
Summary A computer-assisted method is presented for the optimization of separation in gradient elution reversed-phase HPLC. The method is based on a polynomial estimation from nine preliminary experiments according to a two-factor (initial solvent composition C and gradient time T) rectangular design. This is followed by a two-dimension computer scanning technique. Resolution is used as the selection criterion. Good agreement was obtained between predicted data and experimental results.  相似文献   

12.
A new mathematical treatment concerning the gradient elution in reversed-phase liquid chromatography when the volume fraction psi of an organic modifier in the water-organic mobile phase varies linearly with time is presented. The experimental ln k versus psi curve, where k is the retention factor under isocratic conditions in a binary mobile phase, is subdivided into a finite number of linear portions and the solute gradient retention time tR is calculated by means of an analytical expression arising from the fundamental equation of gradient elution. The validity of the proposed analytical expression and the methodology followed for the calculation of tR was tested using eight catechol-related solutes with mobile phases modified by methanol or acetonitrile. It was found that in all cases the accuracy of the predicted gradient retention times is very satisfactory because it is the same with the accuracy of the retention times predicted under isocratic conditions. Finally, the above method for estimating gradient retention times was used in an optimisation algorithm, which determines the best variation pattern of psi that leads to the optimum separation of a mixture of solutes at different values of the total elution time.  相似文献   

13.
This work compares the performance of the three different schemes implementing two-dimensional liquid chromatography (2D-LC) in terms of the peak capacity that they can generate and of the time that they need to complete a two-dimensional analysis. We discuss in detail how time is spent in these two-dimensional liquid chromatography×liquidchromatography×liquid chromatography (LC×LCLC×LC) schemes and how to compare them. Keeping constant the characteristics of the first-dimension separation, we systematically varied those of the second-dimension separation and of its coupling to the first-dimension. In the process, five systems were created, based on the principles of the three known implementations of comprehensive 2D-LC. This work demonstrates an original method for the selection of the best comprehensive 2D-LC approach, depending on the desired peak capacity and on time constraints. The decision to use a 2D-LC method arises from the need to achieve a given resolution (i.e., a target peak capacity) within as short a time as possible or to reach the highest possible resolution in a given analysis time. Using the most appropriate schemes, we suggest how it is realistically possible to generate peak capacities ranging from 266 in just over 20 min or about 2800 in 2.3 h. When the time available for a two-dimensional separation is very short and the desired peak capacity cannot be achieved in 1D-LC, an on-line 2D-LC approach is unquestionably best. However, if a longer analysis time is acceptable, a 10-fold increase in the peak capacity can be obtained at the cost of a mere 7-fold increase in total analysis time.  相似文献   

14.
A novel strategy is described for designing optimal second dimension (2D) gradient conditions for a comprehensive two-dimensional liquid chromatography system where the two dimensions are not fully orthogonal. Using the approach developed here, the initial and final organic modifier content values resulting in the highest coverage of separation space can be derived for each 2D gradient run. Theory indicates that these values can be determined by adapting 2D gradient operation to the degree of orthogonality. The new method is tested on a comprehensive two-dimensional liquid chromatography system that uses reversed phase (RP) columns showing different selectivities in the two dimensions. A comparison between analyses carried out using normal and optimized 2D gradients showed that the latter allow a more efficient use of analysis time. This can result either in an improved peak capacity or in decreasing total analysis time, depending on the final goal of the experiment. In the latter scenario, the number of separated peaks is comparable to that obtained using gradients spanning a wide range of organic modifier but, now, in half the time. As test samples complex mixtures of peptides were analyzed.  相似文献   

15.
Polyoxyethylene(23)lauryl ether (known as Brij‐35) is a nonionic surfactant, which has been considered as an alternative to the extensively used in micellar liquid chromatography anionic surfactant sodium lauryl (dodecyl) sulfate, for the analysis of drugs and other types of compounds. Brij‐35 is the most suitable nonionic surfactant for micellar liquid chromatography, owing to its commercial availability, low cost, low toxicity, high cloud temperature, and low background absorbance. However, it has had minor use. In this work, we gather and discuss some results obtained in our laboratory with several β‐blockers, sulfonamides, and flavonoids, concerning the use of Brij‐35 as mobile phase modifier in the isocratic and gradient modes. The chromatographic performance for purely micellar eluents (with only surfactant) and hybrid eluents (with surfactant and acetonitrile) is compared. Brij‐35 increases the polarity of the alkyl‐bonded stationary phase and its polyoxyethylene chain with the hydroxyl end group allows hydrogen‐bond interactions, especially for phenolic compounds. This offers the possibility of using aqueous solutions of Brij‐35 as mobile phases with sufficiently short retention times. The use of gradients of acetonitrile to keep the concentration of Brij‐35 constant is another interesting strategy that yields a significant reduction in the peak widths, which guarantee high resolution.  相似文献   

16.
A systematic study is reported on the performance of long monolithic capillary columns in gradient mode. Using a commercial nano-LC system, reversed-phase peptide separations obtained through UV-detection were conducted. The chromatographic performance, in terms of conditional peak capacity and peak productivity, was investigated for different gradient times (varying between 90 and 1320min) and different column lengths (0.25, 1, 2 and 4m) all originating from a single 4m long column. Peak capacities reaching values up to n=10(3) were measured in case of the 4m long column demonstrating the high potential of these long monoliths for the analysis of complex biological mixtures, amongst others. In addition, it was found that the different column fragments displayed similar flow resistance as well as consistent chromatographic performance in accordance with chromatographic theory indicating that the chromatographic bed of the original 4m long column possessed a structural homogeneity over its entire length.  相似文献   

17.
Comprehensive two-dimensional liquid chromatographic (LC × LC) systems play an ever increasing role in separation and characterization of complex samples. When coupled with multichannel detectors, such as the diode array detector, these LC × LC systems become especially useful for non-target analysis and identification of patterns based on the information extracted from those complex samples. Nevertheless, due to the large amount of data generated by these systems, the extraction of useful information for the identification of patterns still is one of the major drawbacks for a wider application of this technique. As a preliminary step in data treatment, we have developed a simple and fast way to deal with this large amount of multi-dimensional data by identifying the three-dimensional (3D) regional maxima of each chromatographic peak generated in a LC × LC–DAD system: retention times at the peak maximum in the first- and second-dimensions and the wavelength of the maximum UV absorption. This dataset is then used to build a 3D fingerprinting of the given sample, which alongside the 3D fingerprinting of other samples, can be used to identify different patterns associated with the specific properties of every sample under study. The applicability of the developed methodology was further assessed by performing a non-target LC × LC–DAD analysis of four Portuguese red wine samples.  相似文献   

18.
The application of high temperature comprehensive two-dimensional (2D) liquid chromatography for quantitative characterization of chemical composition and molecular weight (MW) heterogeneities in polyolefins is demonstrated in this study by separating a physical blend of isotactic-polypropylene, ethylene-random-propylene copolymer, and high density polyethylene. The first dimension separation is based on adsorption liquid chromatography that fractionates the blend from low to high ethylene content. The second dimension is size-exclusion chromatography connected with light scattering (LS) and infrared (IR) detectors. The IR detector shows desired sensitivity and linearity for monitoring analyte concentrations in the eluent after 2D separations. In addition, the compositions of the analytes are also determined from the ratio of two IR absorbances at the specified wavelength regions, an absorbance for measuring the level of methyl groups in polyolefins and another absorbance for measuring concentration. The LS detector is used to determine absolute molecular weight of the analytes from the ratio of the light scattering signal to the IR concentration signal. The ability to obtain concentration, chemical composition, and MW of polyolefins after 2D separation provides new opportunities to discover structure-property relationships for polyolefins with complex structures/architectures.  相似文献   

19.
The peak spreading of DNAs of various sizes [12-mer, 20-mer, 50-mer and 95-mer poly(T)] in linear gradient elution (LGE) chromatography with a thin monolithic disk was investigated by using our method developed for determining HETP in LGE. Electrostatic interaction-based chromatography mode (ion-exchange chromatography, IEC) was used. Polymer-based monolithic disks of two different sizes (12 mm diameter, 3mm thickness and 0.34 mL; 5.2 mm diameter, 4.95 mm thickness and 0.105 mL) having anion-exchange groups were employed. For comparison, a 15-μm porous bead IEC column (Resource Q, 6.4mm diameter, 30 mm height and 0.97 mL) was also used. The peak width did not change with the flow velocity for the monolithic disks where as it became wider with increasing velocity. For the monolithic disks the peak width normalized with the column bed volume was well-correlated with the distribution coefficient at the peak position K(R). HETP values were constant (ca. 0.003-0.005 cm) when K(R)>5. Much higher HETP values which are flow-rate dependent were obtained for the porous bead chromatography. It is possible to obtain 50-100 plates for the 3mm monolithic disk. This results in very sharp elution peaks (standard deviation/bed volume=0.15) even for stepwise elution chromatography, where the peak width is similar to that for LGE of a very steep gradient slope.  相似文献   

20.
Recent advances in improving the selectivity and performance for a comprehensive, three-dimensional (3D) gas chromatograph (GC3) instrument are described. With GC3, two six-port diaphragm valves are utilized as the interfaces between three, in-series capillary columns housed in a standard GC instrument fitted with a high data acquisition rate flame ionization detector (FID). Modulation periods for sampling from one column to the next are set so that sufficient slices (i.e., modulations) are acquired by the subsequent dimension resulting in comprehensive data. We present GC3 instrumentation with significantly higher 3D peak capacity than previously reported. An average peak capacity production (i.e., per time) of 180 resolved peaks per minute was experimentally achieved for three representative analytes in a 3D diesel sample separation. This peak capacity production is about 4 times higher than our previous report. We also demonstrate the significant benefit of the added chemical selectivity of the three column GC3 instrument relative to a two column GC × GC instrument, in which one of the three columns is a triflate ionic liquid stationary phase column with a high selectivity for phosphonated compounds (i.e., di-methyl-methyl phosphonate, di-ethyl-methyl phosphonate and di-isopropyl-methyl phosphonate). Using all three separation dimensions, the 2D separation fingerprint of a diesel sample is simultaneously obtained along with selective information regarding the phosphonated compounds in the diesel samples in the additional dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号