首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A formalism is derived for the computation of partial differential cross sections for electron photodetachment and photoionization processes that leave the residual or target molecule in electronic states that are strongly coupled by conical intersections. Because the electronic states of the target are nonadiabatically coupled, the standard adiabatic states approach of solving the electronic Schro?dinger equation for the detached electron at fixed nuclear geometries and then vibrationally averaging must be fundamentally modified. We use a Lippmann-Schwinger equation based approach, which leads naturally to a partitioning of the transition amplitude into a Dyson orbital like part plus a scattering correction. The requisite Green's function is that developed in our previous paper for the direct determination of total integral cross sections. The method takes proper account of electron exchange, possible nonorthogonality of the orbital describing the detached electron, and nonadiabatic effects in the product molecule. The Green's function is constructed in an L(2) basis using complex scaling techniques. The accurate treatment of nonadiabatic effects in the residual molecule is accomplished using the multimode vibronic coupling model. For photodetachment, an approximate approach, which is less computationally demanding, is suggested.  相似文献   

2.
Based on the previously proposed solution for the Schrödinger equation, which corresponds to the representation of a molecule as a dynamically stable geometric figure [1–3] and explicitly reflects the continuous correlation between electronic and nuclear motions with retaining the separation of variables, expressions for the matrix elements of the dipole transition are obtained. It is shown that the equation common for all states has the matrix form. The appearance of parameters having simple meanings and simultaneously affecting both vibrational and electronic components of the general wave function and electron vibrational energy levels is noted. This enables the statement and solution of the corresponding inverse spectral problems.  相似文献   

3.
4.
The nonadiabatic nuclear wavepacket dynamics on the coupled two lowest (1)Σ(+) states of the LiF molecule under the action of a control pulse is investigated. The control is achieved by a modulation of the characteristics of the potential energy curves using an infrared field with a cycle duration comparable to the time scale of nuclear dynamics. The transition of population between the states is interpreted on the basis of the coupled nuclear wavepacket dynamics on the effective potential curves, which are transformed from the adiabatic potential curves with use of a diabatic representation that diagonalizes the dipole-moment matrix of the relevant electronic states. The basic feature of the transition dynamics is characterized in terms of the notion of the collision between the dynamical crossing point and nuclear wavepackets running on such modulated potential curves, and the transition amplitude is mainly dominated by the off-diagonal matrix element of the time-independent electronic Hamiltonian in the present diabatic representation. The importance of the geometry dependence of the intrinsic dipole moments as well as of the diabatic coupling potential is illustrated both theoretically and numerically.  相似文献   

5.
The matrices of electrostatic and spin-orbit Hamiltonians for the system of a 2P atom interacting with a closed shell diatomic molecule in uncoupled, coupled, and complex-valued representations for electronic diabatic basis functions are rederived, and the unitary transformations connecting them are given explicitly. The links to previous derivations are established and existing inconsistencies are identified and eliminated. It is proven that the block-diagonalization of a 6 x 6 matrix of the electronic Hamiltonian is a result of using the basis functions with well-defined properties with respect to time reversal. Consideration of time-reversal symmetry also enforces phase consistency relevant for applications to multisurface reactive scattering and photodetachment spectroscopy calculations, as well as for perspective studies of inelastic effects in cold and ultracold environments. These and further developments are briefly sketched.  相似文献   

6.
A model for simulating photoelectron spectra of the triatomic van der Waals complexes containing stable atomic anion and diatomic molecule is proposed and applied to the Cl(-)...H(2) and Cl(-)...D(2) anions. The model assumes adiabatic separation of the electronic and nuclear motions and localization of the photodetachment act at the atomic chromophore. Under these approximations, the electronic transition dipole moment matrix elements are evaluated using the atoms-in-molecule approach and explicit expressions for the rovibrational line strength factors are derived. The energies and intensities of a number of rovibronic photoelectron transitions are calculated for the Cl(-)...H(2) and Cl(-)...D(2) anions within the adiabatic bender model, i.e., with the full separation of the vibrational motions, whereas the simulations of the broad spectral envelopes are performed using the equilibrium conditions, asymmetric line shape function, and two choices of the relative abundances of the para- and ortho-forms of the complex. The simulations reproduce experimental spectra reasonably well allowing for their unambiguous assignment in terms of vibronic transitions fully consistent with the previous time-dependent calculations. Agreement with the previous theoretical works, manifestations of non-Franck-Condon effects, and implications to the assessment of the neutral potential energy surfaces are discussed.  相似文献   

7.
A model for the quantitative treatment of molecular systems possessing mixed valence excited states is introduced and used to explain observed spectroscopic consequences. The specific example studied in this paper is 1,4-bis(2-tert-butyl-2,3-diazabicyclo[2.2.2]oct-3-yl)-2,3,5,6-tetramethylbenzene-1,4-diyl dication. The lowest energy excited state of this molecule arises from a transition from the ground state where one positive charge is associated with each of the hydrazine units, to an excited state where both charges are associated with one of the hydrazine units, that is, a Hy-to-Hy charge transfer. The resulting excited state is a Class II mixed valence molecule. The electronic emission and absorption spectra, and resonance Raman spectra, of this molecule are reported. The lowest energy absorption band is asymmetric with a weak low-energy shoulder and an intense higher energy peak. Emission is observed at low temperature. The details of the absorption and emission spectra are calculated for the coupled surfaces by using the time-dependent theory of spectroscopy. The calculations are carried out in the diabatic basis, but the nuclear kinetic energy is explicitly included and the calculations are exact quantum calculations of the model Hamiltonian. Because the transition involves the transfer of an electron from the hydrazine on one side of the molecule to the hydrazine on the other side and vice versa, the two transitions are antiparallel and the transition dipole moments have opposite signs. Upon transformation to the adiabatic basis, the dipole moment for the transition to the highest energy adiabatic surface is nonzero, but that for the transition to the lowest surface changes sign at the origin. The energy separation between the two components of the absorption spectrum is twice the coupling between the diabatic basis states. The bandwidths of the electronic spectra are caused by progressions in totally symmetric modes as well as progressions in the modes along the coupled coordinate. The totally symmetric modes are modeled as displaced harmonic oscillators; the frequencies and displacements are determined from resonance Raman spectra. The absorption, emission, and Raman spectra are fit simultaneously with one parameter set. The coupling in the excited electronic state H(ab)(ex) is 2000 cm(-1). Excited-state mixed valence is expected to be an important contributor to the electronic spectra of many organic and inorganic compounds. The energy separations and relative intensities enable the excited-state properties to be calculated as shown in this paper, and the spectra provide new information for probing and understanding coupling in mixed valence systems.  相似文献   

8.
Potential energy curves were evaluated for the ground and thirteen low-lying excited electronic states of the ArH molecule over a wide range of internuclear distances by the multi-reference averaged quadratic coupled cluster method. The ab initio energy differences and transition dipole moments were used to estimate Einstein emission coefficients, absorption oscillator strengths and radiative lifetimes. Diagonal and off-diagonal quantum defects, as functions of internuclear distance, were extracted from ab initio potentials of the lowest Rydberg states of the neutral ArH molecule by taking account of configuration interaction between Rydberg series converging to the ground and two electronic excited states of the ArH(+) cation. The derived quantum-defect functions were used to generate manifolds of higher excited Rydberg states. The agreement between experimental and calculated energies and radiative transition probabilities was found to be as good as or better than that obtained by earlier calculations.  相似文献   

9.
The high intensity of free electron lasers opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules, radiation damage induced by absorption of high intense x-ray radiation is not yet fully understood. One of the striking effects which occurs under intense x-ray illumination is the creation of double core ionized molecules in considerable quantity. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From the MD trajectories, photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schro?dinger equations. These rates served to solve the master equations for the populations of the relevant electronic states. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were incoherently accumulated according to the obtained time-dependent populations, thus neglecting possible interference effects between different decay pathways. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the resulting electron emission spectra. The lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.  相似文献   

10.
State-of-the-art ab initio techniques have been applied to compute the potential energy curves for the SrYb molecule in the Born-Oppenheimer approximation for the electronic ground state and the first fifteen excited singlet and triplet states. All the excited state potential energy curves were computed using the equation of motion approach within the coupled-cluster singles and doubles framework and large basis-sets, while the ground state potential was computed using the coupled cluster method with single, double, and noniterative triple excitations. The leading long-range coefficients describing the dispersion interactions at large interatomic distances are also reported. The electric transition dipole moments have been obtained as the first residue of the polarization propagator computed with the linear response coupled-cluster method restricted to single and double excitations. Spin-orbit coupling matrix elements have been evaluated using the multireference configuration interaction method restricted to single and double excitations with a large active space. The electronic structure data were employed to investigate the possibility of forming deeply bound ultracold SrYb molecules in an optical lattice in a photoassociation experiment using continuous-wave lasers. Photoassociation near the intercombination line transition of atomic strontium into the vibrational levels of the strongly spin-orbit mixed b(3)Σ(+), a(3)Π, A(1)Π, and C(1)Π states with subsequent efficient stabilization into the v' = 1 vibrational level of the electronic ground state is proposed. Ground state SrYb molecules can be accumulated by making use of collisional decay from v' = 1 to v' = 0. Alternatively, photoassociation and stabilization to v' = 0 can proceed via stimulated Raman adiabatic passage provided that the trapping frequency of the optical lattice is large enough and phase coherence between the pulses can be maintained over at least tens of microseconds.  相似文献   

11.
We formulate a Hartree–Fock‐LAPW method for electronic band structure calculations. The method is based on the Hartree–Fock–Roothaan approach for solids with extended electron states and closed core shells where the basis functions of itinerant electrons are linear augmented plane waves. All interactions within the restricted Hartree–Fock approach are analyzed and in principle can be taken into account. In particular, we obtained the matrix elements for the exchange interactions of extended states and the crystal electric field effects. To calculate the matrix elements of exchange for extended states, we first introduce an auxiliary potential and then integrate it with an effective charge density corresponding to the electron exchange transition under consideration. The problem of finding the auxiliary potential is solved by using the strategy of the full potential LAPW approach, which is based on the general solution of periodic Poisson's equation. Here, we use an original technique for the general solution of periodic Poisson's equation and multipole expansions of electron densities. We apply the technique to obtain periodic potentials of the face‐centered cubic lattice and discuss its accuracy and convergence in comparison with other methods. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

12.
We present a fundamentally new approach for measuring the transition dipole moment of molecular transitions, which combines the benefits of quantum interference effects, such as the Autler-Townes splitting, with the familiar R-centroid approximation. This method is superior to other experimental methods for determining the absolute value of the R-dependent electronic transition dipole moment function mu(e)(R), since it requires only an accurate measurement of the coupling laser electric field amplitude and the determination of the Rabi frequency from an Autler-Townes split fluorescence spectral line. We illustrate this method by measuring the transition dipole moment matrix element for the Na2 A 1Sigma(u)+ (v' = 25, J' = 20e)-X 1Sigma(g)+ (v" = 38, J" = 21e) rovibronic transition and compare our experimental results with our ab initio calculations. We have compared the three-level (cascade) and four-level (extended Lambda) excitation schemes and found that the latter is preferable in this case for two reasons. First, this excitation scheme takes advantage of the fact that the coupling field lower level is outside the thermal population range. As a result vibrational levels with larger wave function amplitudes at the outer turning point of vibration lead to larger transition dipole moment matrix elements and Rabi frequencies than those accessible from the equilibrium internuclear distance of the thermal population distribution. Second, the coupling laser can be "tuned" to different rovibronic transitions in order to determine the internuclear distance dependence of the electronic transition dipole moment function in the region of the R-centroid of each coupling laser transition. Thus the internuclear distance dependence of the transition moment function mu(e)(R) can be determined at several very different values of the R centroid. The measured transition dipole moment matrix element for the Na2 A 1Sigma(u)+ (v' = 25, J' = 20e)-X 1Sigma(g)+ (v" = 38, J" = 21e) transition is 5.5+/-0.2 D compared to our ab initio value of 5.9 D. By using the R-centroid approximation for this transition the corresponding experimental electronic transition dipole moment is 9.72 D at Rc = 4.81 A, in good agreement with our ab initio value of 10.55 D.  相似文献   

13.
The electronic properties of liquid ammonia are investigated by a sequential molecular dynamics/quantum mechanics approach. Quantum mechanics calculations for the liquid phase are based on a reparametrized hybrid exchange-correlation functional that reproduces the electronic properties of ammonia clusters [(NH3)n; n=1-5]. For these small clusters, electron binding energies based on Green's function or electron propagator theory, coupled cluster with single, double, and perturbative triple excitations, and density functional theory (DFT) are compared. Reparametrized DFT results for the dipole moment, electron binding energies, and electronic density of states of liquid ammonia are reported. The calculated average dipole moment of liquid ammonia (2.05+/-0.09 D) corresponds to an increase of 27% compared to the gas phase value and it is 0.23 D above a prediction based on a polarizable model of liquid ammonia [Deng et al., J. Chem. Phys. 100, 7590 (1994)]. Our estimate for the ionization potential of liquid ammonia is 9.74+/-0.73 eV, which is approximately 1.0 eV below the gas phase value for the isolated molecule. The theoretical vertical electron affinity of liquid ammonia is predicted as 0.16+/-0.22 eV, in good agreement with the experimental result for the location of the bottom of the conduction band (-V 0=0.2 eV). Vertical ionization potentials and electron affinities correlate with the total dipole moment of ammonia aggregates.  相似文献   

14.
The photoexcitation of cold oxyallyl anions was studied below the adiabatic detachment threshold at a photon energy of 1.60 eV. Photodetachment was observed through two product channels, delayed electron emission from a long‐lived anionic state and dissociative photodetachment via absorption of a second photon. The former produced stable neutral C3H4O, while the latter resulted in the concerted elimination of CO+C2H4 products. The neutral oxyallyl singlet state has a barrier‐free route to cyclopropanone as well as zwitterionic character with a large charge separation and dipole moment. The role of long‐lived dipole‐bound resonances built on the singlet state below the detachment threshold is discussed. These results provide one of the first observations of delayed photoemission in a small cold molecular radical anion, a consequence of the complex electronic structure of the neutral diradical, and provide an example of resonance‐mediated control of the photodissociation processes.  相似文献   

15.
16.
We report the electronic polarization spectroscopy of two metal phthalocyanine chloride compounds (MPcCl, M=Al,Ga) embedded in superfluid helium droplets and oriented in a dc electric field. For both compounds, the laser induced fluorescence spectra show preference for perpendicular excitation relative to the orientation field. This result indicates that the permanent dipoles of both compounds are predominantly perpendicular to the transition dipole. Since the permanent dipole derives from the metal chloride, while the transition dipole derives from the phthalocyanine chromophore, in the plane of phthalocyanine, this qualitative result is not surprising. However, quantitative modeling reveals that this intuitive model is inadequate and that the transition dipole might have tilted away from the molecular plane of phthalocyanine. The out of plane component of the transition dipole amounts to approximately 10% if the permanent dipole is assumed to be approximately 4 debye. The origin for this tilt is puzzling, and we tentatively attribute it to the transition of nonbonding orbitals, either from the chlorine atom or from the bridge nitrogen atom, to the pi* orbitals of the phthalocyanine chromophore. On the other hand, although unlikely, we cannot completely exclude the possibility that both our high level density functional theory calculation and ab initio results severely deviate from reality. The droplet matrix induces redshifts in the origin of the electronic transition and produces discrete phonon wings. Nevertheless, in dc electric fields, all phonon wings and the zero phonon line demonstrate the same dependence on the polarization direction of the excitation laser. Although electronic excitation does couple to the superfluid helium matrix and the resulting phonon wings add complications to the electronic spectrum, this coupling does not affect the direction of the electronic transition dipole. Electronic polarization spectroscopy in superfluid helium droplets is thus still informative in revealing the permanent dipole and its relation relative to the transition dipole.  相似文献   

17.
Summary A method of calculating transition moment and oscillator strength within the framework of the Fock space multi-reference coupled cluster method is described. Diagrammatic technique is used to obtain coupled cluster equations. The general form of equations for the transition moment betweenN-electron ground and excited states is obtained. MBPT analysis of the final equations is done. The excitation energies, dipole transition moments and oscillator strengths for theCH + molecule are calculated.  相似文献   

18.
In this paper the authors show how the multiconfiguration time-dependent Hartree-Fock (MCTDHF) method can be used for the calculation of electronic properties of molecules associated with the population of excited states. In contrast to other methods for correlated electron dynamics, such as configuration interaction, MCTDHF does not rely on a solution of the electronic Schrodinger equation prior to the propagation. The authors apply this approach to the calculation of vertical excitation energies, transition dipole moments, and oscillator strengths for two test molecules, lithium hydride and methane.  相似文献   

19.
A photodetachment experiment is performed on the v=0-->v=0 OH(-) detachment threshold. The weak O and S branches provide a signal strong enough to make amplitude measurements on all five O, P, Q, R, and S branches possible, which are used to fix the formulas for their relative intensities. Photodetachment microscopy is applied to 15 different thresholds of the P, Q, and R branches. The quantitative analysis of the interference patterns obtained does not show any effect of the dipole moment of OH, but yields a new measurement of the rotational parameters of OH(-)(v=0) and of the electron affinity of the molecule. The new recommended value for the electron affinity of (16)O(1)H is 14 740.982(7) cm(-1) or 1.827 648 7(11) eV.  相似文献   

20.
The position and the intensity of electronic bands are influenced by an electric field. Pronounced changes in the position of absorption bands are mainly due to the dipole moment of the molecule in the ground state and the change in the dipole moment during the excitation process, and pronounced changes in intensity are due to the field dependence of the transition moment, which can be described by the transition polarizability. The effect of an external electric field on the optical absorption (electrochromism) of suitable molecules can be used to determine the dipole moment in the ground state, the change in dipole moment during the excitation process, the direction of the transition moment of the electronic band, and certain components of the transition polarizability tensor. These data largely determine the strong solvatochromism (solvent-dependence of the position and intensity of electronic bands), which is observed in particular with molecules having large dipole moments. Smaller contributions to solvatochromism result from dispersion interactions, which predominate in the case of nonpolar molecules. The models developed have been experimentally checked and verified by a combination of electro-optical absorption measurements (influence of an external electric field on absorption) and investigation of the solvent-dependence of the electronic bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号