首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we discuss the a posteriori error estimate of the finite element approximation for the boundary control problems governed by the parabolic partial differential equations. Three different a posteriori error estimators are provided for the parabolic boundary control problems with the observations of the distributed state, the boundary state and the final state. It is proven that these estimators are reliable bounds of the finite element approximation errors, which can be used as the indicators of the mesh refinement in adaptive finite element methods.  相似文献   

2.
Time-dependent problems modeled by hyperbolic partial differential equations can be reformulated in terms of boundary integral equations and solved via the boundary element method. In this context, the analysis of damping phenomena that occur in many physics and engineering problems is a novelty. Starting from a recently developed energetic space-time weak formulation for the coupling of boundary integral equations and hyperbolic partial differential equations related to wave propagation problems, we consider here an extension for the damped wave equation in layered media. A coupling algorithm is presented, which allows a flexible use of finite element method and boundary element method as local discretization techniques. Stability and convergence, proved by energy arguments, are crucial in guaranteeing accurate solutions for simulations on large time intervals. Several numerical benchmarks, whose numerical results confirm theoretical ones, are illustrated and discussed.  相似文献   

3.
Two ways of improving the accuracy of results in the boundary element method are considered. Since the geometries of many problems of practical interest are created from straight lines and circular arcs, errors caused by representing such geometries approximately using quadratic shape functions can be removed using exact geometrical representations for straight and circular boundaries. Besides, exact geometrical representations enable exact analytical integrations for some situations, thereby eliminating the errors caused by approximate numerical integration. The results of some simple test problems show that the use of exact representation of straight and circular geometries, and analytical integration in the situations where this is possible, offers worthwhile benefits in the boundary element analysis of two-dimensional elastostatics problems.  相似文献   

4.
弹性力学的空间轴对称问题可以化为两个变量(r,z)的二维问题求解,但又比平面问题略复杂些.在轴对称问题边界元的程序处理上也会相应带来些麻烦.文章具体介绍了作者在调试轴对称问题边界元程序中遇到的一些问题及处理方法,并给出数值结果加以验证.  相似文献   

5.
This paper contains new representations of the 3D elasticity and thermoelasticity problems, expressed in terms of regular quaternion functions, which in 3D and 4D have properties analogous to those of complex analytical functions in 2D. The known and some new results, described in the paper, are used to formulate boundary 3D problems, related to the theory. The formulae obtained are very similar to those given by Muskhelishvili for 2D boundary problems. The obtained representations can be used for development of a 3D boundary element method in numerical analysis.  相似文献   

6.
Jens Artel  Wilfried Becker 《PAMM》2006,6(1):205-206
The scaled boundary finite element method is a novel semi-analytical analysis technique that combines the advantages of the finite element method and the boundary element method. Only a part of the boundary of the considered domain has to be discretized but nevertheless the method is solely finite element based. The governing equations are solved in the so-called scaling direction analytically, whereas a finite element approximation of the solution is performed in the circumferential directions, which form the boundary of the considered domain. Thus, the numerical effort can be reduced considerably when handling stress concentration problems such as e.g. the free-edge effect in laminated plates. In order to analyze the free-edge effect in a semi-infinite half plane, some kinematic coupling equations have to be introduced, that not only couple the degrees of freedom on the boundary, but also within the non-discretized domain. The implementation of kinematic coupling equations within the method is presented. Finally, the efficiency of the new approach is shown in some benchmark examples. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Fast direct and inverse algorithms for expansion in terms of eigenvectors of one-dimensional eigenvalue problems for a high-order finite element method (FEM) are proposed based on the fast discrete Fourier transform. They generalize logarithmically optimal Fourier algorithms for solving boundary value problems for Poisson-type equations on rectangular meshes to high-order FEM. The algorithms can be extended to the multidimensional case and can be applied to nonstationary problems.  相似文献   

8.
曹礼群 《计算数学》1994,16(4):362-371
p-version有限元的快速高精度算法曹礼群(湘潭大学)THEFASTp-VERSIONFINITEELEMENTMETHODWITHHIGHACCURACY¥CaoLi-qun(XiangtanUniversity)Abstract:Inthis...  相似文献   

9.
A large class of elliptic boundary value problems in elasticity and fluid mechanics can be reduced to systems of boundary integral equations of the first kind. This paper summarizes some of the basic concepts and results concerning the mathematical foundation of boundary element methods for treating such a class of boundary integral equations.  相似文献   

10.
M. Premrov  I. Spacapan 《PAMM》2002,1(1):389-390
An iterative finite element method for solving wave problems of a halfspace is presented in this paper. The halfspace is first truncated by introducing a fictive finite boundary on which some fictive boundary conditions must be imposed. A finite computational domain is in each iteration subjected to actual boundary conditions on real boundary and to fictive Dirichlet or Neumann boundary conditions on the fictive boundary. The radiation condition is satisfied by using DtN operator. The DtN operator is not introduce in the finite element formulation on the fictive boundary so any finite elements can be used. The method is simple and specially useful for computing higher harmonics.  相似文献   

11.
This paper introduces a kind of multigrid finite element method for the coupled semilinear elliptic equations. Instead of the common way of directly solving the coupled semilinear elliptic problems on some fine spaces, the presented method transforms the solution of the coupled semilinear elliptic problem into a series of solutions of the corresponding decoupled linear boundary value problems on the sequence of multilevel finite element spaces and some coupled semilinear elliptic problems on a very low dimensional space. The decoupled linearized boundary value problems can be solved by some multigrid iterations efficiently. The optimal error estimate and optimal computational work are proved theoretically and demonstrated numerically. Moreover, the requirement of bounded second‐order derivatives of the nonlinear term in the existing multigrid method is reduced to a Lipschitz continuous condition in the proposed method.  相似文献   

12.
The scaled boundary finite element method (SBFEM) is extended to the static analysis of thin plates in the framework of Kirchhoff's plate theory. The governing equations are transformed into scaled boundary coordinates. Applying a discrete form of the Kantorovich reduction method results in a set of ordinary differential equations, which can be solved in a closed-form analytical manner. The element stiffness matrices for bounded and unbounded media can be computed, using appropriate subsets of the analytical solution. Examples show the efficiency of the method, applied to plate bending problems. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
This paper presents computational algorithms that make it possible to overcome some difficulties in the numerical solving boundary value problems of thermal conduction when the solution domain has a complex form or the boundary conditions differ from the standard ones. The boundary contours are assumed to be broken lines (the 2D case) or triangles (the 3D case). The boundary conditions and calculation results are presented as discrete functions whose values or averaged values are given at the geometric centers of the boundary elements. The boundary conditions can be imposed on the heat flows through the boundary elements as well as on the temperature, a linear combination of the temperature and the heat flow intensity both at the boundary of the solution domain and inside it. The solution to the boundary value problem is presented in the form of a linear combination of fundamental solutions of the Laplace equation and their partial derivatives, as well as any solutions of these equations that are regular in the solution domain, and the values of functions which can be calculated at the points of the boundary of the solution domain and at its internal points. If a solution included in the linear combination has a singularity at a boundary element, its average value over this boundary element is considered.  相似文献   

14.
Summary The finite element discretization of many elliptic boundary value problems leads to linear systems with positive definite and symmetric coefficient matrices. Many efficient preconditioners are known for these systems. We show that these preconditioning matrices can also be used for the linear systems arising from boundary value problems which are potentially indefinite due to lower order terms in the partial differential equation. Our main tool is a careful algebraic analysis of the condition numbers and the spectra of perturbed matrices which are preconditioned by the same matrices as in the unperturbed case.  相似文献   

15.
We introduce a type of full multigrid method for the nonlinear eigenvalue problem. The main idea is to transform the solution of the nonlinear eigenvalue problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and nonlinear eigenvalue problems on the coarsest finite element space. The linearized boundary value problems are solved by some multigrid iterations. Besides the multigrid iteration, all other efficient iteration methods for solving boundary value problems can serve as the linear problem solver. We prove that the computational work of this new scheme is truly optimal, the same as solving the linear corresponding boundary value problem. In this case, this type of iteration scheme certainly improves the overfull efficiency of solving nonlinear eigenvalue problems. Some numerical experiments are presented to validate the efficiency of the new method.  相似文献   

16.
Conventional adaptive boundary element method cannot be universally applied to solve many more problems than the subject it discussed, and different error estimation formulas need to be designed for varied problems. This paper put forward a new error analysis method based on the fuzzy logic system, which is able to make error estimation effectively using human expert experience, and solve the two classical elasticity problems in conjunction with the H-R adaptive boundary element method. Numerical examples have illustrated the effectiveness, superiority and potential of a fuzzy logic approach in the adaptive boundary element method.  相似文献   

17.
High-order non-reflecting boundary conditions are introduced to create a finite computational space and for the solution of dispersive waves using a spectral element formulation with high-order time integration. Numerical examples are used to demonstrate the synergy of using high-order spatial, time, and boundary discretization. We show that by balancing all numerical errors involved, high-order accuracy can be achieved for unbounded domain problems in polar coordinate systems.  相似文献   

18.
A full multigrid finite element method is proposed for semilinear elliptic equations. The main idea is to transform the solution of the semilinear problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and semilinear problems on a very low dimensional space. The linearized boundary value problems are solved by some multigrid iterations. Besides the multigrid iteration, all other efficient numerical methods can also serve as the linear solver for solving boundary value problems. The optimality of the computational work is also proved. Compared with the existing multigrid methods which need the bounded second order derivatives of the nonlinear term, the proposed method only needs the Lipschitz continuation in some sense of the nonlinear term.  相似文献   

19.
A number of new local and parallel discretization and adaptive finite element algorithms are proposed and analyzed in this paper for elliptic boundary value problems. These algorithms are motivated by the observation that, for a solution to some elliptic problems, low frequency components can be approximated well by a relatively coarse grid and high frequency components can be computed on a fine grid by some local and parallel procedure. The theoretical tools for analyzing these methods are some local a priori and a posteriori estimates that are also obtained in this paper for finite element solutions on general shape-regular grids. Some numerical experiments are also presented to support the theory.

  相似文献   


20.
This paper is concerned with interaction of multiple cracks in a finite plate by using the hybrid displacement discontinuity method (a boundary element method). Detail solutions of the stress intensity factors (SIFs) of the multiple-crack problems in a rectangular plate are given, which can reveal the effect of geometric parameters of the cracked body on the SIFs. The numerical results reported here illustrate that the boundary element method is simple, yet accurate for calculating the SIFs of multiple crack problems in a finite plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号