首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an ab initio calculation of the screened self-energy correction for 1s2 2p3/2 and 1s2 2s states of Li-like ions with nuclear charge numbers in the range Z = 12?100. The evaluation is carried out to all orders in the nuclear strength parameter Zα. This investigation concludes our calculations of all two-electron QED corrections for the 2p3/2-2s transition energy in Li-like ions and thus considerably improves theoretical predictions for this transition for high-Z ions.  相似文献   

2.
The dynamics of charge carriers in doped graphene, i.e., graphene with a gap in the energy spectrum depending on the substrate, in the presence of a Coulomb impurity with charge Z is considered within the effective two-dimensional Dirac equation. The wave functions of carriers with conserved angular momentum J = M + 1/2 are determined for a Coulomb potential modified at small distances. This case, just as any two-dimensional physical system, admits both integer and half-integer quantization of the orbital angular momentum in plane, M = 0, ±1, ±2, …. For J = 0, ±1/2, ±1, critical values of the effective charge Zcr(J, n) are calculated for which a level with angular momentum J and radial quantum numbers n = 0 and n = 1 reaches the upper boundary of the valence band. For Z < Zcr (J, n = 0), the energy of a level is presented as a function of charge Z for the lowest values of orbital angular momentum M, the level with J = 0 being the first to descend to the band edge. For Z>Zcr (J, n = 0), scattering phases are calculated as a function of hole energy for several values of supercriticality, as well as the positions ε0 and widths γ of quasistationary states as a function of supercriticality. The values of ε0* and width γ* are pointed out for which quasidiscrete levels may show up as Breit–Wigner resonances in the scattering of holes by a supercritical impurity. Since the phases are real, the partial scattering matrix is unitary, so that the radial Dirac equation is consistent even for Z > Zcr. In this single-particle approximation, there is no spontaneous creation of electron–hole pairs, and the impurity charge cannot be screened by this mechanism.  相似文献   

3.
This mini-review is dedicated to the 85th birthday of Prof. L.V. Keldysh, from whom we have learned so much. In this paper, we study the potential and electron density depth profiles in surface accumulation layers in crystals with a large and nonlinear dielectric response such as SrTiO3 (STO) in the cases of planar, spherical, and cylindrical geometries. The electron gas can be created by applying an induction D0 to the STO surface. We describe the lattice dielectric response of STO using the Landau–Ginzburg free energy expansion and employ the Thomas–Fermi (TF) approximation for the electron gas. For the planar geometry, we arrive at the electron density profile n(x) ∝ (x + d)–12/7, where dD0–12/7. We extend our results to overlapping electron gases in GTO/STO/GTO heterojunctions and electron gases created by spill-out from NSTO (heavily n-type doped STO) layers into STO. Generalization of our approach to a spherical donor cluster creating a big TF atom with electrons in STO brings us to the problem of supercharged nuclei. It is known that for an atom with a nuclear charge Ze where Z > 170, electrons collapse onto the nucleus, resulting in a net charge Zn < Z. Here, instead of relativistic physics, the collapse is caused by the nonlinear dielectric response. Electrons collapse into the charged spherical donor cluster with radius R when its total charge number Z exceeds the critical value ZcR/a, where a is the lattice constant. The net charge eZn grows with Z until Z exceeds Z* ≈ (R/a)9/7. After this point, the charge number of the compact core Zn remains ≈ Z*, with the rest Z* electrons forming a sparse TF atom with it. We extend our studies of collapse to the case of long cylindrical clusters as well.  相似文献   

4.
The energy of the Dirac sea of interacting urfermions in a lattice space withZ 3 points is calculated using Heisenberg's Hamiltonian and a two-particle approximation which is a variational calculation with the test function ¦?〉=e iη¦D 0〉; ¦D 0〉 is the Dirac sea without interaction,η=(ψ ° ψ) a bilinear expression of the urfermion creation and annihilation operators. The same result is obtained by a BCS-calculation. Beyond that, we derive simple lower and upper bounds for the energy. Excited states are considered consisting of a particle-antiparticle pair with the energyE=2√ω 2+M 2. The massM and the interaction constantW are connected by the equation (4W)?1=Z ?3∑(ω 2+M 2)?1/2. For usual masses 4W~√Z/1 (1 a nuclear length). Methods are discussed to improve the results.  相似文献   

5.
The concept of z scaling reflecting the general features of high-p T particle production is reviewed. Properties of data z presentation are discussed. New data on high-p T particle spectra obtained at the RHIC and Tevatron are analyzed in the framework of z presentation. It was shown that these experimental data confirm z scaling. The change in the anomalous fractal dimensions of colliding objects (“δ jump”) is considered as a signature of new physics. The kinematic ranges preferable for searching for z-scaling violation are established.  相似文献   

6.
The results of a partial-wave analysis of the angular distributions for the process γpηp over the energy range up to 2 GeV are presented. Reliable estimates of the Breit-Wigner parameters of the S11(1535) resonance, as well as the energy dependence of the real and imaginary parts of the electric dipole amplitude E0+ and its phase, are derived from the energy dependence of the regression coefficient a0(W).  相似文献   

7.
The thermoelectric properties of n-Bi2 ? x Sb x Te3 ? y ? z Se y S z solid solutions are studied in the temperature range 300–550 K. It is shown that an increase in the parameter β determining the figure-of-merit Z of the material is observed in compositions with the optimally related effective mass of the density of states m/m 0, the carrier mobility μ0, and the lattice thermal conductivity κ L . Within the temperature range 300–350 K, the parameter β and the figure-of-merit Z are found to increase in solid solutions with substitutions in both bismuth telluride sublattices Bi → Sb and Te → Se, S (x = 0.16, y = z = 0.12) for optimum electron concentrations. An increase in the electron concentration and substitutions of atoms only in the tellurium sublattice bring about an increase in the β parameter and the value of Z at higher temperatures. Within the range 350–450 K, the parameters β and Z are observed to increase in a solid solution with a low content of substituted atoms in the tellurium sublattice Te → Se, S for y = z = 0.09 and, at higher temperatures up to 550 K, in compositions with tellurium substituted by selenium only, with increasing content of substituted atoms.  相似文献   

8.
We investigate the double K-shell ionization of heliumlike ions by a single photon. A fast convergence of QED perturbation theory with respect to the parameter 1/Z is demonstrated in the entire nonrelativistic domain for moderate nuclear charge numbers Z≥2. The ratio of double-to-single photoionization cross sections is calculated for light heliumlike ions, taking into account the leading orders of 1/Z and αZ expansions. A comparison of our results with the available experimental data for a number of neutral atoms is presented.  相似文献   

9.
The effective interaction ΔUAMM of the anomalous magnetic moment (AMM) of an electron with the Coulomb field of an extended nucleus is analyzed. As soon as the q2 dependence of the electron formfactor F2(q2)is taken into account from the beginning, the AMM is found to be dynamically screened at small distances of r ? 1/m. The ΔUAMM effects on the low-lying electronic levels of a superheavy extended nucleus with Zα > 1are analyzed using the nonperturbative approach. The growth rate of the ΔUAMM contribution with increasing Z is shown to be essentially nonmonotonic. At the same time, the energy shifts of electronic levels in the vicinity of the threshold of the lower continuum monotonically decrease in the region Z ?Zcr,1s. The latter result is generalized to the whole self-energy contribution to energy shifts of electronic levels, thus also referring to the possible behavior of QED radiative effects with virtual-photon exchange, considered beyond the framework of the perturbative expansion in Zα.  相似文献   

10.
Explicit formulasfor strongly forbidden magnetic-dipole transitiions between states njl and n′jl in the hydrogen atom and light hydrogen-like ions are derived. The expressions for transition probabilities are presented in the form W n′jl; njl (M1) = D n′n lj αm e Z)10 (in relativistic units), where m e is the electron mass, α is the fine-structure constant, and Z is the nuclear charge; the constants D n′n lj are presented in an analytical form. Before now, only the D 21 01/2 coefficient corresponding to the 1s 1/2–2s 1/2 transition was known in explicit form. The results obtained can be used in designing an experiment on parity violation in the hydrogen atom.  相似文献   

11.
(NH4)3ZrF7 single crystals were grown, and polarization-optical and x-ray diffraction studies were performed on powders and crystalline plates of various cuts over a wide temperature range. Phase transitions are revealed at temperatures T 1↑ = 280 K, T 2↑ = 279.6 K, T 3↑ = 260–265 K, and T 4↑ = 238 K on heating and at T 1↓ = 280 K, T 2↓ = 269–270 K, T 3↓ = 246 K, and T 4↓ = 235 K on cooling. The sequence of changes in symmetry is established to be as follows: O h 5 (Z = 4) ? D 2h 25 (Z = 2) ? C 2h 3 (Z = 2) ? C i 1 (Z = 108) ? monoclinic2(Z = 216).  相似文献   

12.
We present new results of analysis of top-quark differential cross sections obtained by the CMS Collaboration in pp collisions in the framework of the z-scaling approach. The spectra are measured over a wide range of collision energy \(\sqrt s = 7,8,13TeV\) and transverse momentum p T = 30?500 GeV/c of top-quark using leptonic and jet decay modes. Flavor independence of the scaling function ψ(z) is verified in the new kinematic range. The results of analysis of the top-quark spectra obtained at the LHC are compared with similar spectra measured in \(\overline p p\) collisions at the Tevatron energy \(\sqrt s = 1.96TeV\). A tendency to saturation of ψ(z) for the process at low z and a power-law behavior of ψ(z) at high z is observed. The measurements of high-p T is observed. The measurements of highspectra of the top-quark production at highest LHC energy is of interest for verification of self-similarity of particle production, understanding flavor origin and search for new physics symmetries with top-quark probe.  相似文献   

13.
14.
Based on the assumption that the superconducting state belongs to a single irreducible representation of lattice symmetry, we propose that the pairing symmetry in all measured iron-based superconductors is generally consistent with the A 1g s-wave. Robust s-wave pairing throughout the different families of iron-based superconductors at different doping regions signals two fundamental principles behind high-T c superconducting mechanisms: (i) the correspondence principle: the short-range magnetic-exchange interactions and the Fermi surfaces act collaboratively to achieve high-T c superconductivity and determine pairing symmetries; (ii) the magnetic-selection pairing rule: superconductivity is only induced by the magnetic-exchange couplings from the super-exchange mechanism through cation-anion-cation chemical bonding. These principles explain why unconventional high-T c superconductivity appears to be such a rare but robust phenomena, with its strict requirements regarding the electronic environment. The results will help us to identify new electronic structures that can support high-T c superconductivity.  相似文献   

15.
16.
In this paper, we investigate the Noether symmetries of F(T) cosmology involving matter and dark energy. In this model, the dark energy is represented by a canonical scalar field with a potential. Two special cases for dark energy are considered, including phantom energy and quintessence. We obtain F(T)~T 3/4, and the scalar potential V(?)~? 2 for both models of dark energy and discuss quantum picture of this model. Some astrophysical implications are also discussed.  相似文献   

17.
A model is proposed for metastable DX centers formed through Jahn-Teller distortion of the crystal lattice of cadmium telluride, i.e., through the displacement of a D Cd residual donor impurity atom (where D is a Group III element of the periodic table) to the region of a nearest neighbor interstice. The configuration-coor-dinate diagram for a V Cd-D i associated defect is constructed with due regard for the tetrahedral and hexagonal positions of interstitial atoms. The Stokes shift, n-type conductivity, location of the Fermi level, specific features of photoluminescence, and some other effects are explained in terms of the configuration-coordinate diagram. The results of experimental investigations of the energy spectrum of DX centers in cadmium telluride single crystals are in agreement with available theoretical data.  相似文献   

18.
The most important experimental results in charmonium physics in the energy region above the threshold for open-charm production that were obtained in recent years are surveyed. The first measurements of the exclusive cross sections for e + e ?D \(\bar D\), D \(\bar D\)*, and D* \(\bar D\)* processes are discussed along with the discovered decay ψ(4415) → \(\bar D_2^* \)(2460). The properties of charmonium-like states, including the group of states Y (4260), Y (4325), and Y (4660) with quantum numbers of J PC = 1??; the X(3940) and X(4160) states discovered in the process of double charmonium production in e + e ? annihilation; and the X(3872), Y(3940), and Z ±(4430) states found in B-meson decays, are presented.  相似文献   

19.
We evaluate some thermodynamic quantities and characteristic ratios that describe low- and high-temperature s-wave superconducting systems. Based on a set of fundamental equations derived within the conformal transformation method, a simple model is proposed and studied analytically. After including a one-parameter class of fluctuations in the density of states, the mathematical structure of the s-wave superconducting gap, the free energy difference, and the specific heat difference is found and discussed in an analytic manner. Both the zero-temperature limit T = 0 and the subcritical temperature range T ? Tc are discussed using the method of successive approximations. The equation for the ratio R1, relating the zero-temperature energy gap and the critical temperature, is formulated and solved numerically for various values of the model parameter. Other thermodynamic quantities are analyzed, including a characteristic ratio R2, quantifying the dynamics of the specific heat jump at the critical temperature. It is shown that the obtained model results coincide with experimental data for low-Tc superconductors. The prospect of application of the presented model in studies of high-Tc superconductors and other superconducting systems of the new generation is also discussed.  相似文献   

20.
We discuss the scenario where the X(3872) resonance is the \(c\bar c\) = χc1(2P) charmonium which “sits on” the D*0\({\bar D^0}\) threshold. We explain the shift of the mass of the X(3872) resonance with respect to the prediction of a potential model for the mass of the χc1(2P) charmonium by the contribution of the virtual D*\(\bar D\) + c.c. intermediate states into the self energy of the X(3872) resonance. This allows us to estimate the coupling constant of the X(3872) resonance with the D*0\({\bar D^0}\) channel, the branching ratio of the X(3872) → D*0\({\bar D^0}\) + c.c. decay, and the branching ratio of the X(3872) decay into all non-D*0\({\bar D^0}\) + c.c. states. We predict a significant number of unknown decays of X(3872) via two gluon: X(3872) → gluongluonhadrons. We suggest a physically clear program of experimental researches for verification of our assumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号