首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学快报》2020,31(11):2877-2883
Thioxo/dithioxo-naphthalimide is a class of rarely visited fluorophore, first synthesized in 1999. Facile chemistry was devised to achieve mono or dual thionation of the two carbonyl groups of 1,8-naphthalimide. Thionation effectively shifts absorption maximum to longer spectral wavelength, significantly increase absorption coefficients, and dramatically enhances intersystem crossing efficiency with respect to their oxo-analogues. They were first explored as potent photocleavers to induce DNA strand break and novel photosensitizers for photodynamic therapies. In recent years, the unique chemistry of thioxo groups has been harnessed to achieve new applications, such as fluorescent sensors for heave metal ions. These unique photochemical and photophysical characteristics revitalize them intriguing functional molecules to investigate. In this short review, we wish to revisit their first discovery, facile synthesis, and the endeavors on the use of thioxo/dithioxo-naphthalimides for novel chemical and biomedical applications.  相似文献   

2.
Over decades diazoalkenes (R2C=C=N2) were postulated as reactive intermediates in organic chemistry even though their direct spectroscopic detection proved very challenging. In the 1970/80ies several groups probed their existence mainly indirectly by trapping experiments or directly by matrix-isolation studies. In 2021, our group and the Severin group reported independently the synthesis and characterization of the first room-temperature stable diazoalkenes, which initiated a rapidly expanding research field. Up to now four different classes of N-heterocyclic substituted room-temperature stable diazoalkenes have been reported. Their properties and unique reactivity, such as N2/CO exchange or utilization as vinylidene precursors in organic and transition metal chemistry are presented. This review summarizes the early discoveries of diazoalkenes from their initial postulation as transient, elusive species up to the recent findings of the room-temperature stable derivatives.  相似文献   

3.
Linear free‐energy relationships, like Hammett correlations, are fundamental in physical organic chemistry for the elucidation of reaction mechanisms. In this work, we show that Hammett correlations exist for the ring closure of six different model systems of vinylheptafulvenes (VHFs) to their corresponding dihydroazulenes (DHAs). These first‐order reactions were easily followed by UV/Vis absorption spectroscopy on account of the significantly different absorption characteristics between VHFs and DHAs. Opposing effects displayed by substituent groups at two different positions are conveniently accounted for by simply subtracting the two Hammett σ values of each group. The linear correlations readily allow us to obtain unknown and approximate Hammett σ values for previously uninvestigated substituents. We also show that they can provide alternative values to the standard ones. We present values for a variety of substituent groups ranging from alkynes, sulfones, sulfoxides, and different heteroaromatics. The electronic effects exerted by substituent groups on VHFs are also reflected in their absorption maxima. Thus, we have established an empirical relationship between the absorption maximum of the VHF and the Hammett σ values of its substituents. This fine‐tuning of electronic properties is particularly important for the ongoing efforts of using the DHA/VHF molecular switch in molecular electronics devices.  相似文献   

4.
This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid–water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid–water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water–ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil or water is incorporated.  相似文献   

5.
The optical use of colloidal silicon nanocrystals (Si NCs) has gained increasing attention for its possible contributions to building a sustainable society that ideally uses resources and energy with high efficiency without causing damage to the environment or human health. Si wafers (E(g) ≈ 1.1 eV) dominate modern microelectronics as an impressive electronic material, but they exhibit relatively poor optical performance owing to an indirect bandgap structure. Interestingly, however, full control of the size distribution and surface chemistry of the NCs yields size-dependent light emission in a very wide range from near-ultraviolet through visible to near-infrared wavelengths. In addition to such unique luminescence properties, Si exhibits a high chemical affinity to covalent linkages with carbon, oxygen, and nitrogen, thereby producing almost unlimited variations in organic-Si NCs architectures hybridized at the molecular level. To achieve this goal, I note some parameters, including interfacial chemistry, that are emerging as important elements for increasing our understanding of the effect of quantum confinement in nanostructured Si and for realizing efficient fluorescence emission. This article covers new aspects of derivatives of Si NCs in applications that utilize their optical absorption and emission features.  相似文献   

6.
王露  孙威  刘超 《催化学报》2018,39(11):1725-1729
有机硼化合物广泛应用于合成化学、药物化学以及材料化学等领域,开发新颖实用的方法合成有机硼化合物是重要的研究领域.在各种有机硼化合物中,苄基硼酸酯有着一些特有的性质,例如活性相对较高,可以有效地当作苄基化试剂使用.目前已有多种合成苄基硼酸酯的方法,主要集中在苄基格氏试剂或者锂试剂的硼化反应,但是该方法底物兼容性较差,而且苄基格氏试剂或者锂试剂的制备比较困难.随着催化反应的发展,过渡金属(如Pd,Cu,Ni,Fe)催化苄基卤代物的硼化反应及芳基卤代物和1,1-二硼类化合物的偶联反应能够有效地合成这类化合物.一级苄醇在钯或铜的催化作用下也可以转化为苄基硼酸酯.苄基C–H键的催化硼化是潜在的构建苄基硼酸酯的高原子经济性的方法,但目前其选择性和反应活性仍不高.在无金属催化的条件下,对甲苯磺酰腙类化合物与HBpin或B_(2pin_2)发生1,2-金属迁移是合成苄基硼酸酯的有效方法.到目前为止,虽然有很多种合成苄基硼酸酯的方法,但仍无法满足其合成需求,因此开发新型的方法合成苄基硼酸酯具有重要的意义.本文开发了一种新型的铜催化芳香醛/酮类化合物的脱氧氢硼化转化体系.使用廉价易得的铜作为催化剂,叔丁醇钠或者叔丁醇钾作为碱,醇质子作为氢源,在100℃的条件下,芳香醛和芳香酮可直接转化成一级和二级苄基硼酸酯类化合物,该反应操作简单,反应体系可以兼容多种官能团,分离产率在21%–77%之间.反应机理方面,该转化有两种可能的过程,(1)反应体系中首先生成1,1-偕二硼化合物,该化合物在碱和EtOH的作用下发生脱硼质子解,最终转化成苄基单硼化合物;(2)醇质子转化成负氢物种,并与体系中的冄-OBpin硼酸酯生成四配位硼,发生1,2-迁移后得到目标产物.为了验证上述两种反应途径的可行性,我们进行了一系列的控制试验.首先合成了苯乙酮的1,1-二硼化合物,在催化量碱与当量醇的作用下,以99%的收率得到了脱硼质子解的产物,说明1,1-二硼化合物可以在反应体系中转化成苄基单硼化合物.以苯甲醛作为原料合成了冄-OBpin硼酸酯,首先将其投入到甲醇、叔丁醇钠和B_(2pin_2)的体系中,最终得到了47%的苄基单硼;同时将冄-OBpin硼酸酯投入到HBpin与叔丁醇钠的体系中,得到了57%的苄基单硼化合物,说明第二种反应过程通过1,2-迁移得到目标产物也是可行的.在当前的实验条件下,两种反应路径都是可能的.  相似文献   

7.
干宁  栾倩 《大学化学》2017,32(5):11-16
课程是实现教育目标的主要载体。本研究根据材料化学类研究生的需要,以"高等分析化学"课程为研究对象,采用"教学研、立体化"的课程教学理念,构建了"探究式"教学方法。在课堂教学中采用以问题导入为驱动、科研探究和知识传授为基础、第一课堂和第二课堂相结合的能力框架体系。通过几年的实践,该体系日臻完善,效果良好,充分实现了教与学的完美统一,为材料化学类研究生的科研能力培养打下良好基础,有利于将当代研究生培养成为既掌握理论知识又具有实践能力的综合型人才。  相似文献   

8.
稠环电子受体光伏材料   总被引:1,自引:0,他引:1  
代水星  占肖卫 《高分子学报》2017,(11):1706-1714
基于非富勒烯受体的有机太阳能电池是化学和材料领域的热点前沿之一,中国领跑这个热点前沿.中国学者在非富勒烯受体材料方面取得了一系列重要的创新成果.我们提出了"稠环电子受体(FREA)"这一新概念,构建了高性能稠环电子受体新体系,发明了明星分子ITIC.我们的原创性工作引起了国内外同行的广泛关注和跟进.目前,基于稠环电子受体的有机太阳能电池效率已达到13%~14%,超过富勒烯体系.ITIC等稠环电子受体的出现颠覆了富勒烯受体在有机太阳能电池领域的统治地位,开创了有机太阳能电池的非富勒烯时代.本文简要评述了我们在高性能稠环电子受体设计与器件应用中的研究进展,并展望稠环电子受体的未来发展.  相似文献   

9.
Squaraine dyes, a four-membered ring system with structural rigidity, possess unique photoelectrical properties and are marked by their exceptionally sharp and intense absorption associated with a strong fluorescent emission in solution. These favorable characteristics have prompted their exploitation in a number of state of the art applications including photoconductivity, data storage, light-emitting field-effect transistors, solar cells and fluorescent histological probes. In this review, we first summarize the recently proposed novel methods in the synthesis of these versatile derivatives. Subsequently, their extensive applications in the prevalent optical detection of the surrounding medium such as ions, pH, thiol-based compounds, biomolecules and cell over the past decades are covered and discussed. In addition, different categories for the synthesis and sensing mechanisms for various squaric acid-based chemo-/bio- sensors are illustrated. Finally, the challenges and opportunities in the synthesis and application of these derivatives are also briefly discussed.  相似文献   

10.
陈学思 《高分子科学》2014,32(8):969-974
In this study, a novel approach by combining base-catalyzed epoxide ring-opening and thiol-ene click chemistry is presented for the side-chain modification of dextran. The vinyl-modified dextran is prepared by a basic epoxide ring opening reaction of allyl glycidyl ether in 0.1 mol/L NaOH, followed by thiol-addition click reaction of three model sulfhydryl compounds using water-soluble Irgacure 2959 as the photoinitiator, leading to side-chain functionalized dextran modified with carboxyl, bidentate dicarboxyl or amino groups. This is the first example of combining epoxide ring-opening and thiol- ene click chemistry for side-chain modification of dextran in aqueous media. Importantly, it may also be extended as a convenient and efficient method for the side-chain modification of other polysaccharides.  相似文献   

11.
5,6-Dihydroxyindole-based systems engender increasing interest for the design and implementation of new functional aromatic scaffolds and eumelanin-like materials with tailored absorption and electronic properties. However, studies aimed at elucidating the influence of external π-conjugating groups on the redox properties and acid-induced reactivity of these highly oxidizable indolic platforms are lacking. We report herein the synthesis (as acetyl derivatives) and chemical/quantum chemical characterization of the first π-extended 5,6-dihydroxyindole derivatives, 3-ethynyl-5,6-dihydroxyindole (1) and 3,3'-(1,2-ethynediyl)bis-5,6-dihydroxyindole (2), in order to understand whether and how β extension of the enamine-like pyrrole sector affects the absorption properties, redox behavior, and protonation equilibria at both the o-diphenol and quinone levels. Oxidation of 1 and 2 proceeded smoothly to generate dark insoluble materials with eumelanin-like UV properties. On exposure to phosphate buffer at pH 3, 1 was rapidly converted to 3-acetyl-5,6-dihydroxyindole (5) and, in the presence of 5,6-dihydroxyindole, to the cross-conjugated 3,3'-ethenylidenebis-5,6-dihydroxyindole (6). DFT calculations on 1 and 2 and their quinones in their pristine states and after protonation provided a mechanistic frame to rationalize the unusual acid-mediated chemistry of 1 and disclosed 2-quinone as the prototype of a novel class of medium-dependent chromophores. The ethynyl(ene) structural motif is thus proposed as the key to new tunable π-electron extended 5,6-dihydroxyindole/5,6-indolequinone paradigms for the rational design of alkyne-containing hybrid eumelanin-type polymers.  相似文献   

12.
Based on the development prospect of cosmetics industry, the advantage of light industry characteristic and the foundation of applied chemistry in Jiangnan University, a systematic upgrading of applied chemistry was carried out through "emerging engineering education (3E)" project "upgrade and practice of chemistry-related majors of local and/or trade university responding to the social developments" supported by the Ministry of Education. On the basis of investigation and analysis, the orientation and training goal of applied chemistry were updated first, and then the curriculum system was determined and the curriculum construction is strengthened, so as to achieve more distinctive characteristics, more solid foundation and more comprehensive quality. In view of the new requirements of the 3E for talent training, some practices have been formed in the aspects of multi-disciplinary integration, multi-angle coordination and close integration to industry. Contributing the development of cosmetics industry and seizing the commanding point of science and technology from the perspective of talent training, will play a unique role in human social progress.  相似文献   

13.
Poly(ortho ester)s (POEs) are well‐known for their surface‐eroding properties and hence present unique opportunities for controlled‐release and tissue‐engineering applications. Their development and wide‐spread investigation has, however, been severely limited by challenging synthetic requirements that incorporate unstable intermediates and are therefore highly irreproducible. Herein, the first catalytic method for the synthesis of POEs using air‐ and moisture‐stable vinyl acetal precursors is presented. The synthesis of a range of POE structures is demonstrated, including those that are extremely difficult to achieve by other synthetic methods. Furthermore, application of this chemistry permits efficient installation of functional groups through ortho ester linkages on an aliphatic polycarbonate.  相似文献   

14.
Covalent adaptable networks (CANs) possess unique properties as a result of their internal dynamic bonds, such as self-healing and reprocessing abilities. In this study, we report a thermally responsive C−Se dynamic covalent chemistry (DCC) that relies on the transalkylation exchange between selenonium salts and selenides, which undergo a fast transalkylation reaction in the absence of any catalyst. Additionally, we demonstrate the presence of a dissociative mechanism in the absence of selenide groups. After incorporation of this DCC into selenide-containing polymer materials, it was observed that the cross-linked networks display varying dynamic exchange rates when using different alkylation reagents, suggesting that the reprocessing capacity of selenide-containing materials can be regulated. Also, by incorporating selenonium salts into polymer materials, we observed that the materials exhibited good healing ability at elevated temperatures as well as excellent solvent resistance at ambient temperature. This novel dynamic covalent chemistry thus provides a straightforward method for the healing and reprocessing of selenide-containing materials.  相似文献   

15.
There is great interest in using single-walled carbon nanotubes (SWNTs) as nanoscale probes and sensors in biological electronics and optical devices because the electronic and optical properties of SWNTs are extremely sensitive to the surrounding environments. A well-controlled modification of SWNT surfaces may provide unique interfaces that are sensitive to the biological variables such as pH, glucose, various ions and proteins. In this paper, we report a facile chemical routine to prepare water-soluble SWNTs that still retain their van Hove singularities after acid oxidative treatment. The aqueous solutions (0.03-0.15 mg/mL) are stable for more than a month. The solubility in water for as-treated SWNTs with surfaces modified by carboxylate groups provides us with a unique opportunity to reveal the relationship of the SWNT electronic and optical properties with pH. Here we present the first observation that after surface modification with carboxylate groups, the optical absorption of the first interband transition of as-treated water-soluble semiconducting SWNTs reversibly responds to the pH change in aqueous solutions. Our results indicate that surface modification of SWNTs is a promising way for preparing chemically selective SWNT interfaces, which may open new exciting opportunities for various applications.  相似文献   

16.
Carbon cloth was proposed as an ideal model to investigate the effect of surface functional groups. The introduction of surface carboxyl groups significantly enhances the capacities of carbonaceous oxygen diffusion electrodes for the lithium-oxygen batteries.  相似文献   

17.
Black phosphorus (BP) has recently drawn attention in photocatalysis for its optical properties. However, limited by the rapid recombination of photogenerated carriers, the use of BP for photocatalytic water splitting still remains a huge challenge. Herein, we prepare a black/red phosphorus (BP/RP) hetero‐phase junction photocatalyst by a wet‐chemistry method to promote the interfacial charge separation and thus achieve Z‐scheme photocatalytic water splitting without using sacrificial agents. The Z‐scheme mechanism was confirmed by time‐resolved transient absorption spectroscopy. This work provides a novel insight into the interface design of hetero‐phase junction with atomic precision.  相似文献   

18.
Laponite films provide versatile inorganic scaffolds with materials architectures that direct the self-assembly of CdSe quantum dots (QDs or EviTags) and catalytic surfaces that promote the in situ polymerization of polyaniline (PANI) to yield novel nanocomposites for light emitting diodes (LEDs) and solar cell applications. Water-soluble CdSe EviTags with varying, overlapping emission wavelengths in the visible spectrum were incorporated using soft chemistry routes within Na-Laponite host film platforms to achieve broadband emission in the visible spectrum. QD concentrations, composition and synthesis approach were varied to optimize photophysical properties of the films and to mediate self-assembly, optical cascading and energy transfer. In addition, aniline tetramers coupled to CdSe (QD-AT) surfaces using a dithioate linker were embedded within Cu-Laponite nanoscaffolds and electronically coupled to PANI via vapor phase exposure. Nanotethering and specific host-guest and guest-guest interactions that mediate nanocomposite photophysical behavior were probed using electronic absorption and fluorescence spectroscopies, optical microscopy, AFM, SEM, powder XRD, NMR and ATR-FTIR. Morphology studies indicated that Lap/QD-AT films synthesized using mixed solvent, layer by layer (LbL) methods exhibited anisotropic supramolecular structures with unique mesoscopic ordering that affords bifunctional networks to optimize charge transport.  相似文献   

19.
The hydroxylation of unactivated carbon atoms employing methods developed in the realms of classical organic chemistry is difficult to achieve and the processes available lack the degree of chemo-, regio- and enantioselectivity required for organic synthesis. To improve this situation, the concept of docking/protecting groups should enable the organic chemist to employ biohydroxylation as an easy tool for preparative work. Similar to the common practice of using protective groups in organic chemistry, a docking/protecting (d/p) group is introduced first, then the biotransformation is performed, and finally the d/p group is removed. The aim of this concept is not only to avoid time consuming microorganism screening methods, but also to improve hydroxylation position predictability, prevent undesired side reactions, aid substrate detection, and product recovery. This approach is successfully applied to carboxylic acids, ketones, aldehydes, and alcohols.  相似文献   

20.
Nitrophenols are important environmental pollutants and their monitoring is important because of their genotoxic and ecotoxic properties. Easy electrochemical reduction of nitro groups can be used for their voltammetric determination using mercury based electrodes. However, requirements of green analytical chemistry prompted us to investigate a novel type of silver porous electrode (AgPE) prepared by powder metallurgy compatible with both “green” and “white” analytical chemistry requirements. In this paper, AgPE was for the first time successfully used for differential pulse voltammetric determination of micromolar concentrations of 2-nitrophenol (NP), 2,4-dinitrophenol (DNP), and 2,4,6-trinitrophenol (TNP) in aqueous media. The main advantage of the novel method is the possibility to use small sample volume (down to 25 μL) and to work in the presence of oxygen when using supporting electrolyte of pH 3. This advantage partially compensates the fact that the obtained sensitivity and limit of detection are not better than with the previously investigated electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号