首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rheumatoid arthritis(RA),as a chronic autoimmune disease,damages the bone and cartilage of patients,and even leads to disability.Therefore,the diagnosis and treatment of RA is particularly important.However,due to the complexity of RA,it is difficult to make effective early diagnosis of RA,which is detrimental to RA treatment.Besides,long-term intake of anti-RA drugs can also cause damage to patients' organs.The emergence of nanotechnology provides the new train of thoughts for the diagnosis and treatment of RA.And the combination of diagnosis and therapy is an ideal method to solve the problem of disease management of RA patients.In this review,we summarize the mechanism and microenvironment of RA,discuss the commonly used diagnostic techniques and therapeutic drugs for RA,and review their advantages and disadvantages.New nanotherapy strategies such as drug-carrying nanoparticles,PTT,PDT are listed,and their applications in RA treatment are also summarized.In addition,multimodal imaging,combined therapy and responsive diagnosis and treatment are also summarized as important contents.At last,we also review typical nanocarriers that can be used in the integration of diagnosis and therapy,and discussed their potential applications in RA theranostics.  相似文献   

2.
Since mechanical exfoliation of graphene in 2004, unprecedented scientific and technological advances have been achieved in the development of two-dimensional (2D) nanomaterials. These 2D nanomaterials exhibit various unique mechanical, physical and chemical properties on account of their ultrathin thickness, which are highly desirable for many applications such as catalysis, optoelectronics, energy storage/conversion, as well as disease diagnosis and therapeutics. In this review, we summarized recent progress on the design and fabrication of functional 2D nanomaterials capable of being applied for the cancer treatment including drug delivery, photodynamic therapy, and photothermal therapy. Their anticancer mechanisms were discussed in detail, and the related safety concerns were analyzed based on current research developments. This review is expected to provide an insight in the field of 2D nanostructured materials for anticancer applications.  相似文献   

3.
《中国化学快报》2021,32(12):3665-3674
Thrombotic disease is a major problem that endangers human health. At present, MRI and CT are commonly used clinically to diagnose thrombosis, and thrombolytic drugs are used for treatment), but the diagnosis time is lagging, the utilization of drugs is low, and the resulting systemic toxicity problems such as side effects lead to poor treatment effects. Nanotechnology combining photoacoustic dynamics and chemical dynamics has shown great application value in tumor targeting, diagnosis, detection and treatment. It has also become a new direction in the diagnosis and treatment of thrombotic diseases, and has created new applications in the field of nanomaterials. This review summarizes the new progress of this combination in the diagnosis and treatment of thrombotic diseases according to the differences in the construction of the nanotherapy system, at the same time, we put forward some new problems and prospects for the integration of thrombosis diagnosis and treatment.  相似文献   

4.
苝酰亚胺衍生物在肿瘤治疗中的应用进展   总被引:1,自引:1,他引:0  
目前恶性肿瘤已成为人类因疾病死亡的主要因素。化疗是当前肿瘤治疗的主要方式之一,然而常用的化疗药物存在诸多缺陷,如副作用大、易产生耐药性、难以监测等。开发高效低毒治疗药物是当前肿瘤治疗的研究热点之一。通过特定的纳米药物载体可提升药物在病变区域的有效浓度,提高杀伤肿瘤细胞效率,降低抗肿瘤药物毒副作用。苝酰亚胺衍生物(perylenediimides derivatives,PDI)是一种稳定性高、荧光效率优异的纳米分子材料,且易修饰,可连接特定基团,增强其生物兼容性并行使多种功能,可作为药物载体、抗肿瘤药物、荧光示踪剂等用于肿瘤诊断和治疗。本文综述PDI在药物载体、肿瘤细胞抑制剂和荧光示踪剂三方面的研究进展。为PDI应用于临床总结理论研究成果,并进一步指导其实际应用工作的开展。  相似文献   

5.
Neuropsychiatric diseases are one of the main causes of disability, affecting millions of people. Various drugs are used for its treatment, although no effective therapy has been found yet. The blood brain barrier (BBB) significantly complicates drugs delivery to the target cells in the brain tissues. One of the problem-solving methods is the usage of nanocontainer systems. In this review we summarized the data about nanoparticles drug delivery systems and their application for the treatment of neuropsychiatric disorders. Firstly, we described and characterized types of nanocarriers: inorganic nanoparticles, polymeric and lipid nanocarriers, their advantages and disadvantages. We discussed ways to interact with nerve tissue and methods of BBB penetration. We provided a summary of nanotechnology-based pharmacotherapy of schizophrenia, bipolar disorder, depression, anxiety disorder and Alzheimer’s disease, where development of nanocontainer drugs derives the most active. We described various experimental drugs for the treatment of Alzheimer’s disease that include vector nanocontainers targeted on β-amyloid or tau-protein. Integrally, nanoparticles can substantially improve the drug delivery as its implication can increase BBB permeability, the pharmacodynamics and bioavailability of applied drugs. Thus, nanotechnology is anticipated to overcome the limitations of existing pharmacotherapy of psychiatric disorders and to effectively combine various treatment modalities in that direction.  相似文献   

6.
荧光成像具有时空分辨率高、 反馈快、 非侵入和无电离辐射等优点, 是一种重要的生物成像技术. 与传统用于荧光成像的可见光和近红外一区(NIR-I, 600~950 nm)相比, 近红外二区(NIR-Ⅱ, 1000~1700 nm)窗口具有低生物组织散射系数和低生物自发荧光, 采用NIR-Ⅱ光进行活体荧光成像能有效提高成像的分辨率、 信噪比和穿透深度. 稀土纳米颗粒(RENPs)具有大斯托克斯位移、 高化学稳定性、 可调的荧光寿命以及较窄的发射带, 是一种重要的荧光成像探针. 近年来, 一系列具有优异的NIR-Ⅱ发光性能的稀土纳米材料被用于高分辨活体荧光成像. 本文综合评述了近年来RENPs用于高分辨活体成像及诊疗中的研究进展, 概述了RENPs的掺杂调控、 基质晶格选择和复合敏化等NIR-Ⅱ发光增强策略, 介绍了其在多种生物医学场景中的靶向聚集、 荧光传感和疾病治疗等功能, 并总结了其在多路成像、 多模态成像和疾病诊疗中的应用. 最后, 简要分析了RENPs在未来生物医学应用中面临的挑战和发展的方向.  相似文献   

7.
Targeting the EGFR with small-molecule inhibitors is a confirmed valid strategy in cancer therapy. Since the FDA approval of the first EGFR-TKI, erlotinib, great efforts have been devoted to the discovery of new potent inhibitors. Until now, fourteen EGFR small-molecule inhibitors have been globally approved for the treatment of different types of cancers. Although these drugs showed high efficacy in cancer therapy, EGFR mutations have emerged as a big challenge for these drugs. In this review, we focus on the EGFR small-molecule inhibitors that have been approved for clinical uses in cancer therapy. These drugs are classified based on their chemical structures, target kinases, and pharmacological uses. The synthetic routes of these drugs are also discussed. The crystal structures of these drugs with their target kinases are also summarized and their bonding modes and interactions are visualized. Based on their binding interactions with the EGFR, these drugs are also classified into reversible and irreversible inhibitors. The cytotoxicity of these drugs against different types of cancer cell lines is also summarized. In addition, the proposed metabolic pathways and metabolites of the fourteen drugs are discussed, with a primary focus on the active and reactive metabolites. Taken together, this review highlights the syntheses, target kinases, crystal structures, binding interactions, cytotoxicity, and metabolism of the fourteen globally approved EGFR inhibitors. These data should greatly help in the design of new EGFR inhibitors.  相似文献   

8.
Acute pancreatitis (AP) is a complex inflammatory disease caused by multiple etiologies, the pathogenesis of which has not been fully elucidated. Oxidative stress is important for the regulation of inflammation-related signaling pathways, the recruitment of inflammatory cells, the release of inflammatory factors, and other processes, and plays a key role in the occurrence and development of AP. In recent years, antioxidant therapy that suppresses oxidative stress by scavenging reactive oxygen species has become a research highlight of AP. However, traditional antioxidant drugs have problems such as poor drug stability and low delivery efficiency, which limit their clinical translation and applications. Nanomaterials bring a brand-new opportunity for the antioxidant treatment of AP. This review focuses on the multiple advantages of nanomaterials, including small size, good stability, high permeability, and long retention effect, which can be used not only as effective carriers of traditional antioxidant drugs but also directly as antioxidants. In this review, after first discussing the association between oxidative stress and AP, we focused on summarizing the literature related to antioxidant nanomaterials for the treatment of AP and highlighting the effects of these nanomaterials on the indicators related to oxidative stress in pathological states, aiming to provide references for follow-up research and promote clinical application.  相似文献   

9.
曹雨虹  张明勇  刘敏  洪战英 《色谱》2019,37(3):265-273
神经递质(NTs)是神经传递的内源性化学信使,在大脑功能中发挥重要作用。中枢神经系统中神经递质浓度的变化与许多精神和生理疾病有关。神经递质的测定已成为疾病诊断和监测以及治疗干预的重要手段,有效的神经递质体内监测对于疾病诊疗乃至新药研发都至关重要。该文就近年来神经递质的检测方法,包括仪器检测法、电化学检测法以及一些新型检测方法等进行综述,并总结了目前神经递质检测在一些疾病研究中的应用进展。  相似文献   

10.
DNA nanotechnology has been employed in the construction of self‐assembled nano‐biomaterials with uniform size and shape for various biological applications, such as bioimaging, diagnosis, or therapeutics. Herein, recent successful efforts to utilize multifunctional DNA origami nanoplatforms as drug‐delivery vehicles are reviewed. Diagnostic and therapeutic strategies based on gold nanorods, chemotherapeutic drugs, cytosine–phosphate–guanine, functional proteins, gene drugs, and their combinations for optoacoustic imaging, photothermal therapy, chemotherapy, immunological therapy, gene therapy, and coagulation‐based therapy are summarized. The challenges and opportunities for DNA‐based nanocarriers for biological applications are also discussed.  相似文献   

11.
Correct diagnosis and successful therapy are extremely important to enjoy a healthy life when suffering from a disease. To achieve these aims, various cutting-edge technologies have been designed and fabricated to diagnose and treat specific diseases. Among these technologies, aptamer–nanomaterial hybrids have received considerable attention from scientists and doctors because they have numerous advantages over other methods, such as good biocompatibility, low immunogenicity and controllable selectivity. In particular, aptamers, oligonucleic acids or peptides that bind to a specific target molecule, are regarded as outstanding biomolecules. In this review, several screening techniques for aptamers, also called systematic evolution of ligands by exponential enrichment (SELEX) methods, are introduced, and diagnostic and therapeutic aptamer applications are also presented. Furthermore, we describe diverse aptamer–nanomaterial conjugate designs and their applications for diagnosis and therapy.  相似文献   

12.
作为一种重要的贵金属, 金具有表面等离子共振的光学特性, 在材料、 催化和医学诊疗等领域有着广泛且重要的应用. 本文综合评述了表面功能化的金纳米材料在肿瘤诊断及治疗领域的相关研究, 并对金纳米材料在肿瘤诊疗领域的未来发展进行了展望.  相似文献   

13.
Cell-based nanotherapy holds great potential to transform diagnosis and treatment patterns for human diseases, especially for cardiovascular diseases (CVDs). Surface coating with cell membrane has become a powerful strategy for functionalization of therapeutic nanoparticles to achieve biological performances of superior biocompatibility, immune evasion, and specificity. Additionally, extracellular vesicles (EVs) play key roles in the progression of CVDs with their ability of transferring cargos to distant tissues, thus emerging as an appealing option for the diagnosis and therapy of CVDs. In this review, recent progress in cell-based nanotherapy for CVDs is summarized, and different sources of EVs and biomimetic nanoplatforms derived from natural cells are highlighted. Meanwhile, their promising biomedical applications in the diagnosis and targeted treatment of different CVDs are also provided, followed by a discussion of their potential challenges and future prospects.  相似文献   

14.
Gas therapy has attracted wide attention for the treatment of various diseases. However, a controlled gas release is highly important for biomedical applications. Upconversion nanoparticles (UCNPs) can precisely convert the long wavelength of light to ultraviolet/visible (UV/Vis) light in gas therapy for the controlled gas release owing to their unique upconversion luminescence (UCL) ability. In this review, we mainly summarized the recent progress of UCNP-based nanocomposites in gas therapy. The gases NO, O2, H2, H2S, SO2, and CO play an essential role in the physiological and pathological processes. The UCNP-based gas therapy holds great promise in cancer therapy, bacterial therapy, anti-inflammation, neuromodulation, and so on. Furthermore, the limitations and prospects of UCNP-based nanocomposites for gas therapy are also discussed.

UCNPs can convert the long wavelength of light to UV-Vis light for the controlled gas release owing to their unique upconversion luminescence (UCL) ability. This review summarized the recent progress of UCNP-based nanocomposites in gas therapy.  相似文献   

15.
Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted.  相似文献   

16.
Alzheimer's disease (AD), as the most common progressive neurodegenerative disorder, is pathologically characterized by deposition of extracellular plaque composed of amyloid‐β peptide (Aβ). Different assembled states of Aβ have been considered as both important biomarkers and drug targets for the diagnosis and therapy of AD. Recent studies demonstrate that small, diffusible Aβ oligomers formed by aggregation of Aβ monomers are the major toxic agents in AD. Therefore, the development of reliable assays for Aβ (both monomers and oligomers) will be important for the early differential diagnosis of dementia, predicting the progression of AD, as well as monitoring the effectiveness of novel anti‐Aβ drugs for AD. In this review, we summarize the recent progress made in the development of techniques for detection of Aβ monomers and oligomers. In particular, the principles governing the design of these sensors are classified and summarized. Moreover, the advantages and disadvantages of the assays are evaluated. This review also discusses the improvements and challenges for application of these assays in the early diagnosis of AD.  相似文献   

17.
Cancer is the most devastating disease and second leading cause of death around the world. Despite scientific advancements in the diagnosis and treatment of cancer which can include targeted therapy, chemotherapy, endocrine therapy, immunotherapy, radiotherapy and surgery in some cases, cancer cells appear to outsmart and evade almost any method of treatment by developing drug resistance. Quinazolines are the most versatile, ubiquitous and privileged nitrogen bearing heterocyclic compounds with a wide array of biological and pharmacological applications. Most of the anti-cancer agents featuring quinazoline pharmacophore have shown promising therapeutic activity. Therefore, extensive research is underway to explore the potential of these privileged scaffolds. In this context, a molecular hybridization approach to develop hybrid drugs has become a popular tool in the field of drug discovery, especially after witnessing the successful results during the past decade. Histone deacetylases (HDACs) have emerged as an important anti-cancer target in the recent years given its role in cellular growth, gene regulation, and metabolism. Dual inhibitors, especially based on HDAC in particular, have become the center stage of current cancer drug development. Given the growing significance of dual HDAC inhibitors, in this review, we intend to compile the development of quinazoline based HDAC dual inhibitors as anti-cancer agents.  相似文献   

18.
Multifunctional nanoparticles for multimodal imaging and theragnosis   总被引:1,自引:0,他引:1  
Nanomedicine is the biomedical application of nanoscale materials for diagnosis and therapy of disease. Recent advances in nanotechnology and biotechnology have contributed to the development of multifunctional nanoparticles as representative nanomedicine. They were initially developed to enable the target-specific delivery of imaging or therapeutic agents for biomedical applications. Due to their unique features including multifunctionality, large surface area, structural diversity, and long circulation time in blood compared to small molecules, nanoparticles have emerged as attractive preferences for optimized therapy through personalized medicine. Multimodal imaging and theragnosis are the cutting-edge technologies where the advantages of nanoparticles are maximized. Because each imaging modality has its pros and cons, the integration of several imaging agents with different properties into multifunctional nanoparticles allows precise and fast diagnosis of disease through synergetic multimodal imaging. Moreover, nanoparticles are not only used for molecular imaging but also applied to deliver therapeutic agents to the disease site in order to accomplish the simultaneous imaging and therapy called theragnosis. This tutorial review will highlight the recent advances in the development of multifunctional nanoparticles and their biomedical applications to multimodal imaging and theragnosis as nanomedicine.  相似文献   

19.
Microneedles (MNs) are a new type of drug delivery method that can be regarded as an alternative to traditional transdermal drug delivery systems. Recently, MNs have attracted widespread attention for their advantages of effectiveness, safety, and painlessness. However, the functionality of traditional MNs is too monotonous and limits their application. To improve the efficiency of disease treatment and diagnosis by combining the advantages of MNs, the concept of intelligent stimulus-responsive MNs is proposed. Intelligent stimuli-responsive MNs can exhibit unique biomedical functions according to the internal and external environment changes. This review discusses the classification and principles of intelligent stimuli-responsive MNs, such as magnet, temperature, light, electricity, reactive oxygen species, pH, glucose, and protein. This review also highlights examples of intelligent stimuli-responsive MNs for biomedical applications, such as on-demand drug delivery, tissue repair, bioimaging, detection and monitoring, and photothermal therapy. These intelligent stimuli-responsive MNs offer the advantages of high biocompatibility, targeted therapy, selective detection, and precision treatment. Finally, the prospects and challenges for the application of intelligent stimuli-responsive MNs are discussed.  相似文献   

20.
Chemotherapy drugs continue to be the main component of oncology treatment research and have been proven to be the main treatment modality in tumor therapy. However, the poor delivery efficiency of cancer therapeutic drugs and their potential off-target toxicity significantly limit their effectiveness and extensive application. The recent integration of biological carriers and functional agents is expected to camouflage synthetic biomimetic nanoparticles for targeted delivery. The promising candidates, including but not limited to red blood cells and their membranes, platelets, tumor cell membrane, bacteria, immune cell membrane, and hybrid membrane are typical representatives of biological carriers because of their excellent biocompatibility and biodegradability. Biological carriers are widely used to deliver chemotherapy drugs to improve the effectiveness of drug delivery and therapeutic efficacy in vivo, and tremendous progress is made in this field. This review summarizes recent developments in biological vectors as targeted drug delivery systems based on microenvironmental stimuli-responsive release, thus highlighting the potential applications of target drug biological carriers. The review also discusses the possibility of clinical translation, as well as the exploitation trend of these target drug biological carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号