首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2020,31(11):2937-2940
Monitoring dynamics of mitochondria has become an essential approach to explore the function of mitochondria in living cells with the emergence of super-resolution fluorescence microscopy. However, long-term super-resolution imaging of mitochondria is still challenging due to the lack of photostable fluorescent probes and stable mitochondria-specific markers which are not affected by the changes of mitochondrial membrane potential. Here, we introduce a method for long-term imaging mitochondrial dynamic through the SNAP-tag fluorogenic probe based on 4-azetidinyl-naphthalimide derivatives. Using structured illumination microscopy (SIM), we observed the fusion and fission of mitochondria over a course of 16 min at 109 nm resolution. Furthermore, the interactions as well as fusion between mitochondria and lysosomes were studied during mitophagy at the nanoscale. Convincingly, the combination of SNAP-tag fluorogenic probes and super-resolution fluorescence microscopy will offer a new way to monitor dynamic mitochondria in living cells.  相似文献   

2.
In this review, we described the design strategies of SNAP-tag fl uorogenic probes with turn-on fl uorescence responses, which minimized the fl uorescence background and allowed for direct imaging in living cells without wash-out steps. These probes can apply in real-time analysis of protein localization, dynamics, and protein– protein interactions in living cells. Furthermore, the excellent fl uorescent properties made it possible to apply some of the probes in super-resolution fl uorescence imaging.  相似文献   

3.
《中国化学快报》2022,33(12):5042-5046
The need for temporal resolution and long-term stability in super-resolution fluorescence imaging has motivated research to improve the photostability of fluorescent probes. Due to the inevitable photobleaching of fluorophores, it is difficult to obtain long-term super-resolution imaging regardless of the self-healing strategy of introducing peroxide scavengers or the strategy of fluorophore structure modification to suppress TICT formation. The buffered fluorogenic probe uses the intact probes in the buffer pool to continuously replace the photobleached ones in the target, which greatly improves the photostability and enables stable dynamic super-resolution imaging for a long time. But the buffering capacity comes at the expense of reducing the number of fluorescent probes in targets, resulting in low staining fluorescence intensity. In this paper, we selected BODIPY 493, a lipid droplet probe with high fluorescence brightness, to explore the dynamic process of lipid droplet staining of this probe in cells. We found that BODIPY 493 only needs very low laser power for lipid droplet imaging due to the high molecular accumulation in lipid droplets and the high brightness, and the spatiotemporal resolution is greatly improved. More importantly, we found that BODIPY 493 also has a certain buffering capacity, which enables BODIPY 493 to be used for super-resolution imaging of lipid droplet dynamics. This work reminds researchers to coordinate the buffering capacity and brightness of fluorogenic probes.  相似文献   

4.
乔庆龙  周伟  陈婕  刘文娟  苗露  尹文婷  徐兆超 《色谱》2019,37(8):872-877
为将生物体内微观的蛋白行为可视化并以宏观信号呈现出来对蛋白进行实时、动态分析,借助SNAP-tag蛋白标签技术与有机小分子荧光染料,构建了一系列用于活细胞内实时监测目标蛋白的免洗荧光探针。标签蛋白SNAP-tag能够特异性识别探针中的苄基鸟嘌呤,从而使目标蛋白共价连接上荧光团(萘酰亚胺),携带上荧光信使。此外,由于萘酰亚胺从水环境中被牵引至SNAP-tag蛋白的疏水空腔,其荧光信号呈现出2~13倍的增强。通过SNAP-tag标签蛋白与目标蛋白的融合,该荧光探针实现了对活细胞内线粒体蛋白CoX8A及核内蛋白H2B特异性识别,在免洗条件下完成了对目标蛋白的实时追踪及原位分析。  相似文献   

5.
DNA-PAINT enabled super-resolution imaging through the transient binding of fluorescently-labelled single-stranded DNA (ssDNA) imagers to target ssDNA. However, its performance is constrained by imager background fluorescence, resulting in relatively long image acquisition and potential artifacts. We designed a molecular beacon (MB) as the PAINT imager. Unbound MB in solution reduces the background fluorescence due to its natively quenched state. They are fluorogenic upon binding to target DNA to create individual fluorescence events. We demonstrate that MB-PAINT provides localization precision similar to traditional linear imager DNA-PAINT. We also show that MB-PAINT is ideally suited for fast super-resolution imaging of molecular tension probes in living cells, eliminating the potential of artifacts from free-diffusing imagers in traditional DNA-PAINT at the cell-substrate interface.  相似文献   

6.
Newly emerging super-resolution imaging techniques provide opportunities for precise observations on cellular microstructures. However, they also impose severe demands on fluorophores. Here, we develop a new series of NIR xanthene dyes, named as KRh s, by replacing the 10-position O of rhodamines with a cyclo-ketal. KRh s display an intense NIR emission peak at 700 nm with fluorescence quantum yields up to 0.64. More importantly, they, without the aid of enhancing buffer, exhibit stochastic fluorescence off–on switches to support time-resolved localization of single fluorophore. KRh s are functionalized into KRh-MitoFix , KRh-Mem and KRh-Halo that demonstrate mitochondria, plasma membrane and fusion protein targeting ability, respectively. Consequently, these KRh probes demonstrate straightforward usage for super-resolution imaging of these targets in live cells. Therefore, KRh s merit future development for fluorescence labeling and super-resolution imaging in the NIR region.  相似文献   

7.
Understanding the biomolecular interactions in a specific organelle has been a long-standing challenge because it requires super-resolution imaging to resolve the spatial locations and dynamic interactions of multiple biomacromolecules. Two key difficulties are the scarcity of suitable probes for super-resolution nanoscopy and the complications that arise from the use of multiple probes. Herein, we report a quinolinium derivative probe that is selectively enriched in mitochondria and switches on in three different fluorescence modes in response to hydrogen peroxide (H2O2), proteins, and nucleic acids, enabling the visualization of mitochondrial nucleoprotein dynamics. STED nanoscopy reveals that the proteins localize at mitochondrial cristae and largely fuse with nucleic acids to form nucleoproteins, whereas increasing H2O2 level leads to disassociation of nucleic acid–protein complexes.  相似文献   

8.
Compared with other imaging techniques,fluorescence microscopy has become an essential tool to study cell biology due to its high compatibility with living cells.Owing to the resolution limit set by the diffraction of light,fluorescence microscopy could not resolve the nanostructures in the range of<200 nm.Recently,many techniques have been emerged to overcome the diffraction barrier,providing nanometer spatial resolution.In the course of development,the progress in fluorescent probes has helped to promote the development of the high-resolution fluorescence nanoscopy.Here,we describe the contributions of the fluorescent probes to far-field super resolution imaging,focusing on concepts of the existing super-resolution nanoscopy based on the photophysics of fluorescent nanoprobes,like photoswitching,bleaching and blinking.Fluorescent probe technology is crucial in the design and implementation of super-resolution imaging methods.  相似文献   

9.
An engineered protein tag for multiprotein labeling in living cells   总被引:3,自引:0,他引:3  
The visualization of complex cellular processes involving multiple proteins requires the use of spectroscopically distinguishable fluorescent reporters. We have previously introduced the SNAP-tag as a general tool for the specific labeling of SNAP-tag fusion proteins in living cells. The SNAP-tag is derived from the human DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) and can be covalently labeled in living cells using O6-benzylguanine derivatives bearing a chemical probe. Here we report the generation of an AGT-based tag, named CLIP-tag, which reacts specifically with O2-benzylcytosine derivatives. Because SNAP-tag and CLIP-tag possess orthogonal substrate specificities, SNAP and CLIP fusion proteins can be labeled simultaneously and specifically with different molecular probes in living cells. We furthermore show simultaneous pulse-chase experiments to visualize different generations of two different proteins in one sample.  相似文献   

10.
Protein labeling with fluorogenic probes is a powerful method for the imaging of cellular proteins. The labeling time and fluorescence contrast of the fluorogenic probes are critical factors for the precise spatiotemporal imaging of protein dynamics in living cells. To address these issues, we took mutational and chemical approaches to increase the labeling kinetics and fluorescence intensity of fluorogenic PYP‐tag probes. Because of charge‐reversal mutations in PYP‐tag and probe redesign, the labeling reaction was accelerated by a factor of 18 in vitro, and intracellular proteins were detected with an incubation period of only 1 min. The brightness of the probe both in vitro and in living cells was enhanced by the mutant tag. Furthermore, we applied this system to the imaging analysis of bromodomains. The labeled mutant tag successfully detected the localization of bromodomains to acetylhistone and the disruption of the bromodomain–acetylhistone interaction by a bromodomain inhibitor.  相似文献   

11.
Protein labeling with fluorogenic probes is a powerful method for the imaging of cellular proteins. The labeling time and fluorescence contrast of the fluorogenic probes are critical factors for the precise spatiotemporal imaging of protein dynamics in living cells. To address these issues, we took mutational and chemical approaches to increase the labeling kinetics and fluorescence intensity of fluorogenic PYP‐tag probes. Because of charge‐reversal mutations in PYP‐tag and probe redesign, the labeling reaction was accelerated by a factor of 18 in vitro, and intracellular proteins were detected with an incubation period of only 1 min. The brightness of the probe both in vitro and in living cells was enhanced by the mutant tag. Furthermore, we applied this system to the imaging analysis of bromodomains. The labeled mutant tag successfully detected the localization of bromodomains to acetylhistone and the disruption of the bromodomain–acetylhistone interaction by a bromodomain inhibitor.  相似文献   

12.
Protein turnover critically influences many biological functions, yet methods have been lacking to assess this parameter in?vivo. Here, we demonstrate how chemical labeling of SNAP-tag fusion proteins can be exploited to measure the half-life of resident intracellular and extracellular proteins in living mice. First, we demonstrate that SNAP-tag substrates have wide?bioavailability in mice and can be used for the specific in?vivo labeling of SNAP-tag fusion proteins. We then apply near-infrared probes to perform noninvasive imaging of in?vivo-labeled tumors. Finally, we use SNAP-mediated chemical pulse-chase labeling to perform measurement of the in?vivo half-life of different extra- and intracellular proteins. These results open broad perspectives for studying protein function in living animals.  相似文献   

13.
陈婕  刘文娟  徐兆超 《色谱》2021,39(10):1055-1064
所见即所得是生命科学研究的中心哲学,贯穿在不断认识单个分子、分子复合体、分子动态行为和整个分子网络的历程中。活的动态的分子才是有功能的,这决定了荧光显微成像在生命科学研究中成为不可替代的工具。但是当荧光成像聚焦到分子水平的时候,所见并不能给出想要得到的。这个障碍是由于受光学衍射极限的限制,荧光显微镜无法在衍射受限的空间内分辨出目标物。超分辨荧光成像技术突破衍射极限的限制,在纳米尺度至单分子水平可视化生物分子,以前所未有的时空分辨率研究活细胞结构和动态过程,已成为生命科学研究的有力工具,并逐渐应用到材料科学、催化反应过程和光刻等领域。超分辨成像技术原理不同,其具有的技术性能各异,限制了各自特定的技术特色和应用范围。目前主流的超分辨成像技术包括3种:结构光照明显微镜技术(structured illumination microscopy, SIM)、受激发射损耗显微技术(stimulated emission depletion, STED)和单分子定位成像技术(single molecule localization microscopy, SMLM)。这些显微镜采用不同的复杂技术,但是策略却是相同和简单的,即通过牺牲时间分辨率来提升衍射受限的空间内相邻两个发光点的空间分辨。该文通过对这3种技术的原理比较和在生物研究中的应用进展介绍,明确了不同超分辨成像技术的技术优势和适用的应用方向,以方便研究者在未来研究中做合理的选择。  相似文献   

14.
Decoding cellular processes requires visualization of the spatial distribution and dynamic interactions of biomolecules. It is therefore not surprising that innovations in imaging technologies have facilitated advances in biomedical research. The advent of super-resolution imaging technologies has empowered biomedical researchers with the ability to answer long-standing questions about cellular processes at an entirely new level. Fluorescent probes greatly enhance the specificity and resolution of super-resolution imaging experiments. Here, we introduce key super-resolution imaging technologies, with a brief discussion on single-molecule localization microscopy (SMLM). We evaluate the chemistry and photochemical mechanisms of fluorescent probes employed in SMLM. This Review provides guidance on the identification and adoption of fluorescent probes in single molecule localization microscopy to inspire the design of next-generation fluorescent probes amenable to single-molecule imaging.  相似文献   

15.
The multiple applications of super-resolution microscopy have prompted the need for minimally invasive labeling strategies for peptide-guided fluorescence imaging. Many fluorescent reporters display limitations (e.g., large and charged scaffolds, non-specific binding) as building blocks for the construction of fluorogenic peptides. Herein we have built a library of benzodiazole amino acids and systematically examined them as reporters for background-free fluorescence microscopy. We have identified amine-derivatized benzoselenadiazoles as scalable and photostable amino acids for the straightforward solid-phase synthesis of fluorescent peptides. Benzodiazole amino acids retain the binding capabilities of bioactive peptides and display excellent signal-to-background ratios. Furthermore, we have demonstrated their application in peptide-PAINT imaging of postsynaptic density protein-95 nanoclusters in the synaptosomes from mouse brain tissues.  相似文献   

16.
Super-resolution microscopy (SRM) imaging of the finite subcellular structures and subtle bioactivities inside organelles delivers abundant cellular information with high fidelity to unravel the intricate biological processes. An ideal fluorescent probe with precise control of fluorescence is critical in SRM technique like stimulated emission depletion (STED). Si-rhodamine was decorated with both targeting group and H+-receptor, affording the dually fluorogenic Si-rhodamine in which the NIR fluorescence was efficiently controlled by the coalescent of spirolactone-zwitterion equilibrium and PeT mechanism. The dually fluorogenic characters of the probe offer a perfect mutual enhancement in sensitivity, specificity and spatial resolution. Strong fluorescence only released in the existence of targeting protein at acidic lysosomal pH, ensured precisely tracking the dynamic of lysosomal structure and pH in living cells by STED.  相似文献   

17.
We studied the three-dimensional (3D) distribution of actin filaments and mitochondria in relation to ACBT glioblastoma cells migration. We embedded the cells in the spheroid form within collagen hydrogels and imaged them by in situ multiphoton microscopy (MPM). The static 3D overlay of the distribution of actin filaments and mitochondria provided a greater understanding of cell-to-cell and cell-to-substrate interactions and morphology. While imaging mitochondria to obtain ratiometric redox index based on cellular fluorescence from reduced nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide we observed differential sensitivity of the migrating ACBT glioblastoma cells to femtosecond laser irradiation employed in MPM. We imaged actin-green fluorescent protein fluorescence in live ACBT glioma cells and for the first time observed dynamic modulation of the pools of actin during migration in 3D. The MPM imaging, which probes cells directly within the 3D cancer models, could potentially aid in working out a link between the functional performance of mitochondria, actin distribution and cancer invasiveness.  相似文献   

18.
Mitochondrial DNA (mtDNA) plays a crucial but incompletely understood role in cellular biochemistry and etiology of numerous disease states. Thus, there is an urgent need for targeted probes that can dynamically respond to changes to mtDNA such as copy number in live cells, but it is difficult to permeate the mitochondrial membrane of the living cell. Now, a ruthenium(II) light‐switching probe targeted by peptide vectorization selectively to mitochondrial nucleoids is presented. Evidence for DNA binding by the probe in live cells is derived from confocal fluorescence microscopy, resonance Raman, and luminescence lifetime imaging. While viable under imaging conditions, specific staining of mitochondrial DNA permitted efficient and selective photoinduced toxicity on a cell‐by‐cell basis under higher excitation intensities. This powerful combination of imaging and photocytotoxicity is an important step towards realizing phototheranostic application of such RuII probes.  相似文献   

19.
Single-molecule applications, saturated pattern excitation microscopy, and stimulated emission depletion (STED) microscopy demand bright as well as highly stable fluorescent dyes. Here we describe the synthesis of quantum-yield-optimized fluorophores for reversible, site-specific labeling of proteins or macromolecular complexes. We used polyproline-II (PPII) helices as sufficiently rigid spacers with various lengths to improve the fluorescence signals of a set of different trisNTA-fluorophores. The improved quantum yields were demonstrated by steady-state and fluorescence lifetime analyses. As a proof of principle, we characterized the trisNTA-PPII-fluorophores with respect to in vivo protein labeling and super-resolution imaging at synapses of living neurons. The distribution of His-tagged AMPA receptors (GluA1) in spatially restricted synaptic clefts was imaged by confocal and STED microscopy. The comparison of fluorescence intensity profiles revealed the superior resolution of STED microscopy. These results highlight the advantages of biocompatible and, in particular, small and photostable trisNTA-PPII-fluorophores in super-resolution microscopy.  相似文献   

20.
Monitoring mitochondrial derived copper(Ⅱ) in live cells is highly demanded, but accurately detecting is unmet due to the interference with cytoplasmic copper(Ⅱ). Herein, we have reported the design,synthesis and characterization of photocontrollable fluorogenic probe, M_(Cu)~(-3), which is equipped with a photo-labile group(nitrobenzyl group) and mitochondria targeting unit(triphenylphosphonium salt).This novel probe showed an intense fluorescence enhancement in response to copper(Ⅱ) without interference from other metal cations in the biological condition(p H 6–9). The detection limit is 1.7 ×10~(-7) mol/L in HEPES buffer. The confocal fluorescence imaging results demonstrated M_(Cu)~(-3) can visualize mitochondrial copper(Ⅱ) in live mammalian cells. The clear advantage of our photocontrollable method is successful to avoid the influence of cytoplasmic copper(Ⅱ) during mitochondria specific detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号