首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 763 毫秒
1.
《化学:亚洲杂志》2017,12(17):2231-2236
Thermoresponsive water‐soluble polymers are of great importance since they typically show a lower critical solution temperature (LCST) in aqueous media. In this research, the LCST change in broad temperature ranges of copolymers composed of natural glycyrrhetinic acid (GA)‐based methacrylate and N ,N′ ‐dimethylacrylamides (DMAs) was investigated as a function of the concentration and the content of GA pendants. By complexation of GA pendants with β‐cyclodextrin (β‐CD), a side‐chain polypseudorotaxane was obtained, which exhibited a significant increase in the LCST of copolymers. Moreover, the precisely reversible control of the LCST behavior was realized through adding a competing guest molecule, sodium 1‐admantylcarboxylate. This work illustrates a simple and effective approach to endow water‐soluble polymers with broad temperature tunability and helps us further understand the effect of a biocompatible host–guest complementary β‐CD/GA pair on the thermoresponsive process.  相似文献   

2.
Despite the large number of publications and patents concerning pH/thermoresponsive polymers, few data are available concerning the preparation of thermoresponsive cross-linked microspheres from preformed polymers. Therefore, N-isopropylacrylamide-co-acrylamide-co-(2-hydroxyethyl acrylate) copolymers were obtained as a new thermoresponsive material with a lower critical solution temperature (LCST) around 36 degrees C, in phosphate buffer at pH 7.4, and with a cross-linkable OH group in their structure. The LCST value was determined both by UV spectroscopy and microcalorimetric analysis. These copolymers were solubilised in acidified aqueous solution below their LCST, dispersed in mineral oil, and transformed into stable microspheres by cross-linking with glutaraldehyde. The thermoresponsive microspheres were characterised by optical and scanning electron microscopy, degree of swelling, and water retention. The pore dimensions of the microspheres and the retention volumes of some drugs and typical compounds were evaluated at different temperatures by liquid chromatography. Indomethacin, as a model drug, was included in the microspheres by the solvent evaporation method. Finally, the influence of temperature and of temperature cycling on drug release was investigated.  相似文献   

3.
The change of polymerization method from conventional free radical polymerization to the reversible addition fragmentation chain transfer (RAFT) method provided thermoresponsive behavior of upper critical solution temperature (UCST)‐type in water to copolymers of styrene (St) and acrylamide (AAm). Sample preparation conditions (temperature and time of dissolution) for turbidity measurements could also significantly influence the thermoresponsive behavior of polymers based on AAm. Poly(AAm‐co‐St)s made by RAFT method till high conversions showed sharp cloud points ranging 50–62 °C with low hysteresis in water depending upon the copolymer composition. Samples for turbidity measurements were prepared under optimized conditions, that is, 70 °C for 1.5 h. In contrast, the copolymers made by conventional radical polymerization in all copolymer composition range were not thermoresponsive. The example [poly(AAm‐co‐St)] emphasizes the importance of compositional homogeneity of macromolecular chains for showing UCST‐type transitions in water for a system with wide difference in reactivity ratios of the comonomers. Since, examples of polymeric systems showing UCST in water are not too many, this work highlights how compositional homogeneity would help in developing many more systems with tuned cloud points. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1878–1884  相似文献   

4.
A novel copolymer based on supramolecular motif 2,6‐diaminopyridine and water‐soluble acrylamide, poly[N‐(6‐acetamidopyridin‐2‐yl) acrylamide‐co‐acrylamide], was synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization with various monomer compositions. The thermoresponsive behavior of the copolymers was studied by turbidimetry and dynamic light scattering (DLS). The obtained copolymers showed an upper critical solution temperature (UCST)‐type phase transition behavior in water and electrolyte solution. The phase transition temperature was found to increase with decreasing amount of acrylamide in the copolymer and increasing concentration of the solution. Furthermore, the phase transition temperature varied in aqueous solutions of electrolytes according to the nature and concentration of the electrolyte in accordance with the Hoffmeister series. A dramatic solvent isotope effect on the transition temperature was observed in this study, as the transition temperature was almost 10–12 °C higher in D2O than in H2O at the same concentration and acrylamide composition. The size of the aggregates below the transition temperature was larger in D2O compared to that in H2O that can be explained by deuterium isotope effect. The thermoresponsive behavior of the copolymers was also investigated in different cell medium and found to be exhibited UCST‐type phase transition behavior in different cell medium. Such behavior of the copolymers can be useful in many applications including biomedical, microfluidics, optical materials, and in drug delivery. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2064–2073  相似文献   

5.
以正己胺为引发剂, 通过γ-炔丙基-L-谷氨酸羧酸酐(PLG-NCA)和N-正辛基甘氨酸羧酸酐(Oct-NNCA)逐步开环聚合和后修饰策略合成了分子量分布较窄的温度响应性两嵌段共聚物寡聚乙二醇单元修饰的聚(γ-炔丙基-L-谷氨酸)-b-聚(N-正辛基甘氨酸)[(PPLG-g-EG3)-b-PNOG]. 通过示差扫描量热法(DSC)研究了不同比例聚合物的结晶行为; 利用圆二色谱法(CD)研究了聚合物的二级结构, 并研究了聚合物在水溶液中的自组装行为, 采用透射电子显微镜(TEM)观察了组装后的形貌. 结果表明, 该温度响应性聚合物在室温下呈现α-螺旋结构, 随着温度升高, α-螺旋的构象减少. 该聚合物可以在水溶液中自发组装成棒状结构.  相似文献   

6.
Water-soluble and thermoresponsive macrocycles with stable inclusion toward guests are highly valuable to construct stimuli-responsive supramolecular materials for versatile applications. Here, we develop such macrocycles – ureido-substituted cyclodextrins (CDs) which exhibit unprecedented upper critical solution temperature (UCST) behavior in aqueous media. These novel CD derivatives showed good solubility in water at elevated temperature, but collapsed from water to form large coacervates upon cooling to low temperature. Their cloud points are greatly dependent on concentration and can be mediated through oxidation and chelation with silver ions. Significantly, the amphiphilicity of these CD derivatives is supportive to host-guest binding, which affords them inclusion abilities to guest dyes. The inclusion complexation remained nearly intact during thermally induced phase transitions, which is in contrast to the switchable inclusion behavior of lower critical solution temperature (LCST)-type CDs. Moreover, ureido-substituted CDs were exploited to co-encapsulate a pair of guest dyes whose fluorescence resonance energy transfer process can be switched by the UCST phase transition. We therefore believe these novel thermoresponsive CDs may form a new strategy for developing smart macrocycles and allow for exploring smart supramolecular materials.  相似文献   

7.
Thermoresponsive sol–gel transition polymers based on biodegradable poly(amino acid) were synthesized by the reaction of poly(succinimide) with dodecylamine and amino alcohols. The introduction of the hydrophobic amine into the thermoresponsive poly(amino acid)s induced the sol–gel transition in phosphate buffer saline. The effects of the side chain structure, molecular weight, concentration of the polymer, and the additives (inorganic salts and urea) in the solution on the thermoresponsive behaviors were systematically investigated. A relationship between the lowest critical solution temperature (LCST) in the dilute solution and the viscosity reduction of the concentrated solution upon heating was observed. The present poly(amino acid)s showing a thermoresponsive sol–gel transition in aqueous solutions possess immense potential as an injectable biodegradable hydrogel system for various biomedical applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Poly[N‐isopropylacrylamide‐coN‐(3‐methoxypropyl)acrylamide]‐b‐poly(D,L‐lactide) (P(IPAAm‐co‐MPAAm)‐b‐PLA) as a thermoresponsive block copolymer and PMPAAm‐b‐PLA as a nonthermoresponsive block copolymer were co‐assembled into thermoresponsive polymeric micelles in water. In addition, PMPAAm‐b‐P(IPAAm‐co‐MPAAm)‐b‐PLA triblock copolymer was assembled to form thermoresponsive micelles with a hydrophilic layer on the outermost surface of the thermoresponsive corona. Using both micelles, we investigated the effects of introducing hydrophilic polymer segments on micellar aggregation behavior at temperatures above the lower critical solution temperature (LCST) of the thermoresponsive micelles. Despite the external hydrophilic PMPAAm layer on PMPAAm‐b‐P(IPAAm‐co‐MPAAm)‐b‐PLA micelles, aggregation following dehydration of the thermoresponsive segments was not significantly suppressed at temperatures above the LCST due to the instability of the core‐corona state. In contrast, intermicellar aggregation was successfully controlled by blending P(IPAAm‐co‐MPAAm) and PMPAAm in the thermoresponsive corona region, even above the LCST. In particular, PMPAAm chains longer than the P(IPAAm‐co‐MPAAm) chains could regulate the hydrodynamic diameter of micellar aggregates at temperatures above the LCST. The micelles showed enhanced drug release rates in response to temperature changes above the LCST without precipitating from solution. These results indicated that a side‐by‐side structure of hydrophilic/thermoresponsive chains in the corona region could effectively control the micellar aggregation state after a thermal phase transition. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1695–1704  相似文献   

9.
The synthesis of alpha,omega-end-functionalized copolymers of N-isopropylacrylamide and N-(3-dimethylaminopropyl)acrylamide was performed. Monomer ratios of 100:0, 96:4, and 81:19 were investigated. The lower critical solution temperature (LCST) of these polymers was determined by cloud-point measurements and by microcalorimetric measurements. The LCST increased from 32 over 37 to 47 degrees C as the hydrophobicity increased with increasing amount of comonomer N-(3-dimethylaminopropyl)acrylamide. The polymers could successfully be adsorbed onto gold surfaces. Finally, vesicle adsorption onto these self-assembled polymer films on flat gold surfaces was investigated as the vesicle solution temperature was varied. It could be observed that vesicle adsorption was hindered as long as the temperature of the vesicle solution was above the LCST of the polymer. As soon as it dropped below the LCST the vesicle adsorption process was initiated.  相似文献   

10.
The phase behavior of statistical copolymers composed of (4‐tert‐butylstyrene) (B) and (4‐tert‐butoxystyrene) (O), abbreviated as s‐BO, with polyisoprene (I) was investigated by optical microscopic (OM) observation and small‐angle neutron scattering (SANS) measurements. It has been known that B/I blend shows lower critical solution temperature (LCST) type phase diagram, while O/I blend has upper critical solution temperature (UCST) type one. Several blends of s‐BOs having mol fraction of B, mB, comparable to 0.50, with I showed both UCST and LCST type phase diagram. Furthermore, UCST type phase behavior was observed for blends having small mB, while LCST type one was for that of large mB at all used temperatures. Hence, the phase behavior of s‐BO/I blend can be understood as a result of the competition of two interactions having opposite temperature dependence. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2272–2280, 2009  相似文献   

11.
Phase behavior of blends of poly(vinyl methyl ether) (PVME) with four styrene-butadiene-styrene (SBS) triblock copolymers, being of various molecular weights, architecture, and compositions, was investigated by small-angle light scattering. Small-angle X-ray scattering investigation was accomplished for one blend. Low critical solution temperature (LCST) and a unique phase behavior, resembling upper critical solution temperature (UCST), were observed. It was found that the architecture of the copolymer greatly influenced the phase behavior of the blends. Random phase approximation theory was used to calculate the spinodal phase transition curves of the ABA/C and BAB/C systems; LCST and resembling UCST phase behavior were observed as the parameters of the system changed. Qualitatively, the experimental and the theoretical results are consistent with each other. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
The thermodynamics, structures, and applications of thermoresponsive systems, consisting primarily of water solutions of organic salts, are reviewed. The focus is on organic salts of low melting temperatures, belonging to the ionic liquid (IL) family. The thermo-responsiveness is represented by a temperature driven transition between a homogeneous liquid state and a biphasic state, comprising an IL-rich phase and a solvent-rich phase, divided by a relatively sharp interface. Demixing occurs either with decreasing temperatures, developing from an upper critical solution temperature (UCST), or, less often, with increasing temperatures, arising from a lower critical solution temperature (LCST). In the former case, the enthalpy and entropy of mixing are both positive, and enthalpy prevails at low T. In the latter case, the enthalpy and entropy of mixing are both negative, and entropy drives the demixing with increasing T. Experiments and computer simulations highlight the contiguity of these phase separations with the nanoscale inhomogeneity (nanostructuring), displayed by several ILs and IL solutions. Current applications in extraction, separation, and catalysis are briefly reviewed. Moreover, future applications in forward osmosis desalination, low-enthalpy thermal storage, and water harvesting from the atmosphere are discussed in more detail.  相似文献   

13.
By free radical polymerization, we have prepared a series of water‐soluble, thermosensitive copolymers based on N‐isopropylacrylamide and (meth)acrylamide derivatives of cholic acid, one of the bile acids. The copolymers contained 1–7 mol‐% of the (meth)acrylamide derivatives of cholic acid. The chemical composition in the copolymers was studied by NMR spectroscopy and was found to be close to the original composition of the comonomers in the feed prior to polymerization. The lower critical solution temperatures (LCST) of the polymer solutions were measured by means of differential scanning calorimetry and turbidimetry. The resulting copolymers exhibit systematic changes in their LCSTs as a function of their chemical composition, as the incorporation of hydrophobic comonomers leads to a lower LCST.  相似文献   

14.
Linear copolymers from N-isopropylacrylamide(NIPA),acrylic acid(AA)and diacetone acrylamide(DAA)have been prepared. The effect of composition,ionic strength and pH on their lower critical solution temperature(LCST)has been investigated.  相似文献   

15.
An upper critical solution temperature (UCST)‐type self‐oscillating polymer was designed that exhibited rhythmic soluble–insoluble changes induced by the Belousov–Zhabotinsky (BZ) reaction. The target polymers were prepared by conjugating Ru(bpy)3, a catalyst for the BZ reaction, to ureido‐containing poly(allylamine‐co‐allylurea) (PAU) copolymers. The Ru(bpy)3‐conjugated PAUs exhibited a UCST‐type phase‐transition behavior, and the solubility of the polymer changed in response to the alternation in the valency of Ru(bpy)3. The ureido content influences the temperature range of self‐oscillation, and the oscillation occurred at higher temperatures than conventional LCST‐type self‐oscillating polymers. Furthermore, the self‐oscillating behavior of the Ru‐PAU could be regulated by addition of urea, which is a unique tuning strategy. We envision that novel self‐oscillating polymers with widely tunable soluble‐insoluble behaviors can be rationally designed based these UCST‐type polymers.  相似文献   

16.
We prepared well‐defined diblock copolymers of thermoresponsive poly(N‐isopropylacrylamide‐coN,N‐dimethylacrylamide) blocks and biodegradable poly(D ,L ‐lactide) blocks by combination of reversible addition‐fragmentation chain transfer radical (RAFT) polymerization and ring‐opening polymerization. α‐Hydroxyl, ω‐dithiobenzoate thermoresponsive polymers were synthesized by RAFT polymerization using hydroxyl RAFT agents. Biodegradable blocks were prepared by ring‐opening polymerization of D ,L ‐lactide initiated by α‐hydroxyl groups of thermoresponsive polymers, which inhibit the thermal decomposition of ω‐dithioester groups. Terminal dithiobenzoate (DTBz) groups of thermoresponsive blocks were easily reduced to thiol groups and reacted with maleimide (Mal). In aqueous media, diblock copolymer products formed surface‐functionalized thermoresponsive micelles. These polymeric micelles had a low critical micelle concentration of 22 μg/L. In thermoresponsive studies of the micelles, hydrophobic DTBz‐surface micelles demonstrated a significant shift in lower critical solution temperature (LCST) to a lower temperature of 30.7 °C than that for Mal‐surface micelles (40.0 °C). In addition, micellar LCST was controlled by changing bulk mixture ratios of respective heterogeneous end‐functional diblock copolymers. Micellar disruption at acidic condition (pH 5.0) was completed within 5 days due to hydrolytic degradation of PLA cores, regardless of showing a slow disruption rate at physiological condition. Furthermore, we successfully improved water‐solubility of hydrophobic drug, paclitaxel by incorporating into the micellar cores. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7127–7137, 2008  相似文献   

17.
The perturbed hard-sphere-chain (PHSC) equation of state is used to calculate liquid-liquid equilibria of binary nonpolar solvent/homopolymer systems exhibiting both an upper critical solution temperature (UCST) and a lower critical solution temperature (LCST). Systems studied include polyisobutylene, polyethylene, and polystyrene solutions. Equation-of-state parameters of homopolymers are obtained by regressing the pressure-volume-temperature data of polymer melts. In polymer solutions, however, theory overestimates the equation-of-state effect which causes the LCST at elevated temperature. To correct the overestimated equation-of-state effect, an empirical adjustable parameter is introduced into the perturbation term of the PHSC equation of state. An entropy parameter is also introduced into the Helmholtz energy of the mixture to correlate quantitatively the dependence of critical temperatures on polymer molecular weight. For systems exhibiting a LCST, two adjustable parameters are required to obtain quantitative agreement of theoretical critical temperatures with experiment as a function of polymer molecular weight. For systems exhibiting both an UCST and a LCST, three adjustable parameters may be necessary. The need for so many empirical binary parameters is probably due to the oversimplified perturbation term which is based on the mean-field assumption. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
A series of water‐soluble thermoresponsive hyperbranched copoly(oligoethylene glycol)s were synthesized by copolymerization of di(ethylene glycol) methacrylate (DEG‐MA) and oligo(ethylene glycol) methacrylate (OEG‐MA, Mw = 475 g/mol), with ethylene glycol dimethacrylate (EGD‐MA) used as the crosslinker, via reversible addition fragmentation chain transfer polymerization. Polymers were characterized by size exclusion chromatography and nuclear magnetic resonance analyses. According to the monomer composition, that is, the ratio of OEG‐MA: DEG‐MA: EGD‐MA, the lower critical solution temperature (LCST) could be tuned from 25 °C to 90 °C. The thermoresponsive properties of these hyperbranched copolymers were studied carefully and compared with their linear analogs. It was found that molecular architecture influences thermoresponsive behavior, with a decrease of around 5–10 °C in the LCST of the hyperbranched polymers compared with the LCST of linear chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2783–2792, 2010  相似文献   

19.
Double hydrophilic block copolymers (DHBC) consisting of a Jeffamine block, a statistical copolymer based on ethylene oxide and propylene oxide units possessing a lower critical solution temperature (LCST) of 30 degrees C in water, and poly(L-glutamic acid) as a pH-responsive block were synthesized by ring-opening polymerization of gamma-benzyl-L-glutamate N-carboxyanhydride using an amino-terminated Jeffamine macroinitiator, followed by hydrolysis. This DHBC proved thermoresponsive as evidenced by dynamic light scattering and small-angle neutron scattering experiments. Spherical micelles with a Jeffamine core and a poly(L-glutamic acid) corona were formed above the LCST of Jeffamine. The size of the core of such micelles decreased with increasing temperature, with complete core dehydration being achieved at 66 degrees C. Such behavior, commonly observed for thermosensitive homopolymers forming mesoglobules, is thus demonstrated here for a DHBC that self-assembles to generate thermoresponsive micelles of high colloidal stability.  相似文献   

20.
We developed a simple and improved expression for the Helmholtz energy of mixing which uses a Taylor series of an exponential function based on extending the Redlich-Kister expansion. This model incorporates the chain-length dependence of polymers and specific interactions such as hydrogen bonds. The proposed model can accurately predict most phase diagrams of various binary polymer solutions including upper critical solution temperature (UCST), lower critical solution temperature (LSCT), both UCST and LCST, and closed miscibility loops. Our model fits experimental data of the complex phase behavior of polymer solutions well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号