首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
《中国化学快报》2020,31(11):2980-2984
Fluorescent probes have been widely employed in biological imaging and sensing. However, it is always a challenge to design probes with high sensitivity. In this work, based on rhodamine skeleton, we developed a general strategy to construct sensitivity-enhanced fluorescent probe with the help of theoretical calculation for the first time. As a proof of concept, we synthesized a series of HOCl probes. Experiment results showed that with the C-9 of pyronin moiety of rhodamine stabilized by an electron donor group, probe DQF-S exhibited an importantly enhanced sensitivity (LOD: 0.2 nmol/L) towards HOCl together with fast response time (<10 s). Moreover, due to the breaking symmetrical electron distribution by another electron donor group, the novel rhodamine probe DQF-S displayed a far red to near-infrared emission (>650 nm) and large Stokes shift. Bioimaging studies indicated that DQF-S can not only effectively detect basal HOCl in various types of cells, but also be successfully applied to image tumor tissue in vivo. These results demonstrate the potential of our design as a useful strategy to develop excellent fluorescent probes for bioimaging.  相似文献   

2.
Hypochlorous acid (HOCl), a reactive oxygen species (ROS), plays a significant biological role in living systems. However, abnormal levels of HOCl are implicated in many inflammation‐associated diseases. Therefore, the detection of HOCl is of great importance. In this work, we describe the HOCl‐promoted cyclization of rhodamine‐thiosemicarbazides to rhodamine‐oxadiazoles, which is then exploited as a novel design strategy for the development of a new fluorescence turn‐on HOCl probe 2 . On the basis of the fluorescence resonance energy transfer (FRET) signaling mechanism, 2 was further converted into 1 a and 1 b , which represent the first paradigm of FRET‐based ratiometric fluorescent HOCl probes. The outstanding features of 1 a and 1 b include well‐resolved emission peaks, high sensitivity, high selectivity, good functionality at physiological pH, rapid response, low cytotoxicity, and good cell‐membrane permeability. Furthermore, these excellent attributes enable us to demonstrate, for the first time, the ratiometric imaging of endogenously produced HOCl in living cells by using these novel ratiometric probes. We expect that 1 a and 1 b will be useful molecular tools for studies of HOCl biology. In addition, the HOCl‐promoted cyclization reaction of rhodamine‐thiosemicarbazides to rhodamine‐oxadiazoles should be widely applicable for the development of different types of fluorescent HOCl probes.  相似文献   

3.
Hypochlorous acid (HOCl), a reactive oxygen species (ROS), plays a significant biological role in living systems. However, abnormal levels of HOCl are implicated in many inflammation-associated diseases. Therefore, the detection of HOCl is of great importance. In this work, we describe the HOCl-promoted cyclization of rhodamine-thiosemicarbazides to rhodamine-oxadiazoles, which is then exploited as a novel design strategy for the development of a new fluorescence turn-on HOCl probe 2. On the basis of the fluorescence resonance energy transfer (FRET) signaling mechanism, 2 was further converted into 1a and 1b, which represent the first paradigm of FRET-based ratiometric fluorescent HOCl probes. The outstanding features of 1a and 1b include well-resolved emission peaks, high sensitivity, high selectivity, good functionality at physiological pH, rapid response, low cytotoxicity, and good cell-membrane permeability. Furthermore, these excellent attributes enable us to demonstrate, for the first time, the ratiometric imaging of endogenously produced HOCl in living cells by using these novel ratiometric probes. We expect that 1a and 1b will be useful molecular tools for studies of HOCl biology. In addition, the HOCl-promoted cyclization reaction of rhodamine-thiosemicarbazides to rhodamine-oxadiazoles should be widely applicable for the development of different types of fluorescent HOCl probes.  相似文献   

4.
A pinacol boronate caged NIAD-4 derivative was demonstrated to be a near-infrared fluorescent probe for fast and selective detection of hypochlorite over other ROS species.  相似文献   

5.
A simple ratiometric probe (Naph‐Rh) has been designed and synthesized based on a through‐bond energy transfer (TBET) system for sensing HOCl. In this probe, rhodamine thiohydrazide and naphthalene formyl were connected by simple synthesis methods to construct a structure of monothio‐bishydrazide. Free probe Naph‐Rh showed only the emission of naphthalene. When probe Naph‐Rh reacted with HOCl, monothio‐bishydrazide could be converted into 1,2,4‐oxadiazole, which not only ensured that the donor and the acceptor were connected with electronically conjugated bonds, but also resulted in the spiro‐ring opening and the emission of rhodamine. Therefore, a typical TBET process took place. The probe possessed high‐energy transfer efficiency and large pseudo‐Stokes shifts. As the first TBET probe for HOCl, Naph‐Rh showed excellent selectivity and sensitivity toward HOCl over other reactive oxygen species (ROS)/reactive nitrogen species (RNS), and could respond fast to a low concentration of HOCl in the real sample. In addition, the probe was suitable for imaging HOCl in living cells due to its real‐time response, excellent resolution, and reduced cytotoxicity.  相似文献   

6.
Zhang Z  Zheng Y  Hang W  Yan X  Zhao Y 《Talanta》2011,85(1):779-786
A rhodamine 6G hydrazide fluorescent chemosensor was prepared for the rapid HOCl detection in aqueous media. The system makes good use of the irreversible HOCl-mediated selective oxidation reaction to generate fluorescent response proportional to the amount of HOCl in neutral buffer. This probe exhibits great photostability, high sensitivity, and good selectivity for HOCl over other reactive species and most of the common metal ions. Furthermore, the probe is cell membrane permeable, and its applicability has been successfully demonstrated for fluorescence imaging of both exogenous and endogenous HOCl within living cells. Cytotoxicity assays prove that this probe is almost nontoxic to the cultured cell lines under the experimental conditions.  相似文献   

7.
Optical properties of a series of molecular two‐photon fluorescent Cu2+ probes containing the same acceptor (rhodamine group) are analyzed using time‐dependent density functional theory in combination with analytical response theory. Special emphasis is placed on evolution of the probes' optical properties in the presence of Cu2+. In this study, the compound with naphthalene as the donor is shown to be excellent ratiometric fluorescent chemosensor, whereas the compound with quinoline derivative as the donor shows off/on‐typed colorimetric fluorescent response. For the compound with naphthalimide derivative as the donor, changing the connection between the donor and acceptor can efficiently prevent the fluorescent quenching of the probe both in the absence and presence of Cu2+. The donor moiety and the connection between donor and acceptor are thus found to play dominant roles on sensing performance of these probes. Moreover, distributions of molecular orbitals involved in the excitation and emission of the probes are analyzed to explore responsive mechanism of the probes. The through‐bond energy transfer process is theoretically demonstrated. Our results are used to elucidate the available experimental measurements. This work is helpful to understand the relationships of structure with optical properties for the studied probes.  相似文献   

8.
Triazolopyridines are an important kind of fused-ring compounds. A HOCl-promoted triazolopyridine formation strategy is reported here for the first time in which hypochlorous acid (HOCl) mildly and efficiently promotes the formation of 1,2,4-triazolo[4,3-a]pyridines NT1-NT6 from various 2-pyridylhydrazones N1-N6. N6, a rhodol-pyridylhydrazone hybrid, was developed into a fluorescent probe for the selective detection of HOCl, and successfully applied to probe endogenous HOCl in living cells and zebrafish in situ and in real time. The present intramolecular cyclization reaction is selective and atom-economical, thereby not only providing an important approach for the convenient synthesis of triazolopyridines, but also offering a general strategy for sensitive, selective and biocompatible detection of endogenous HOCl in complex biosystems.  相似文献   

9.
As the most abundant transition metal element in mammals, iron(Fe) plays a vital role in life activities. It is of great significance to study the variation of Fe3+ level in living organisms. In virtue of the advantages of high sensitivity, good selectivity and low damage to living systems, the fluorescence detection of Fe3+ has attracted much attention. Compared with the intensity-based fluorescent probe, the ratiometric fluorescent probe has less interference of environmental and can realize quantitative detection. In this study, four ratiometric Fe3+ fluorescent probes, R1, R2, R3 and R4, were designed and synthesized using fluorescence resonance energy transfer(FRET) mechanism to achieve quantitative detection of Fe3+. In the FRET systems, 1,8-naphthalimide fluorophore derivatives were adopted as donors while rhodamine B derivatives were selected as receptors. The connection sites of the donor and acceptor in R3 and R4 are different from those in R1 and R2. All the four probes showed good response and selectivity to Fe3+. The energy transfer efficiencies of R3 and R4 were obviously higher than those of R1 and R2. This work provided a promising strategy for the development of fluorescent ratiometic Fe3+sensors.  相似文献   

10.
Wei  Peng  Liu  Lingyan  Yuan  Wei  Yang  Jiajia  Li  Ruohan  Yi  Tao 《中国科学:化学(英文版)》2020,63(8):1153-1158
Levels of reactive oxygen species(ROS) in cancer cells or in the tumor microenvironment differ noticeably from those in normal cells and cellular microenvironments because ROS play important roles in all aspects of tumor physiology. However, due to the lack of adequate tools, it is difficult to study the relationship between ROS, especially certain types of ROS(e.g., HOCl), and cancer. We report herein an HOCl-specific fluorescent probe, FDOCl-20, containing a thiocarbamide group as a receptor, for the visualization of HOCl in solid tumors in vivo. This probe displays high selectivity and sensitivity to HOCl, and is appropriate for use in acidic conditions, including the tumor microenvironment. Using FDOCl-20 as a tool, we can visualize HOCl in solid tumors in vivo. Importantly, the fluorescent intensity of FDOCl-20 is proportional to tumor volume. Thus, FDOCl-20 is a useful tool to investigate the relationship between HOCl and the physiological processes of tumors.  相似文献   

11.
利用双(2,4,6)三氯苯基过氧化草酸酯(TCPO)-过氧化氢(H2O2)-咪唑-荧光探针的化学发光体系,研究了荧光探针化学发光成像,对几种常用的荧光探针(丁基罗丹明、罗丹明B、罗丹明6G、荧光素及异硫氰酸荧光素等)进行了定量分析。本方法具有高灵敏度、成像分析高通量等优点,线性范围宽,检出限达10-11mol/L。对四甲基异硫氰酸罗丹明(TRITC)标记的单克隆羊抗人IgG的化学发光成像分析,比相同条件下荧光成像的检出限低一个数量级。  相似文献   

12.
A boron dipyrromethene (BODIPY)-based fluorometric probe, HCS, has been successfully developed for the highly sensitive and selective detection of hypochlorous acid (HOCl). The probe is based on the specific HOCl-promoted oxidation of methyl phenyl sulfide. The reaction is accompanied by a 160-fold increase in the fluorescent quantum yield (from 0.003 to 0.480). The fluorescent turn-on mechanism is accomplished by suppression of photoinduced electron transfer (PET) from the methyl phenyl sulfide group to BODIPY. The fluorescence intensity of the reaction between HOCl and HCS shows a good linearity in the HOCl concentration range 1–10 μM. The detection limit is 23.7 nM (S/N = 3). In addition, confocal fluorescence microscopy imaging using RAW264.7 macrophages demonstrates that the HCS probe could be an efficient fluorescent detector for HOCl in living cells.  相似文献   

13.
Two highly selective OFF-ON green emitting fluorescent thiol probes (1 and 2) with intense absorption in the visible spectrum (molar extinction coefficient ε is up to 73?800 M(-1) cm(-1) at 509 nm) based on dyads of BODIPY (as electron donor of the photo-induced electron transfer, i.e.PET) and 2,4-dinitrobenzenesulfonyl (DNBS) (as electron acceptor of the PET process) were devised. The single crystal structures of the two probes were determined. The distance between the electron donor (BODIPY fluorophore) and the electron acceptor (DNBS) of probe 2 is larger than that of probe 1, as a result the contrast ratio (or the PET efficiency) of probe 2 is smaller than that of probe 1. However, fluorescence OFF-ON switching effects were observed for both probe 1 and probe 2 in the presence of cysteine (the emission enhancement is 300-fold for probe 1 and 54-fold for probe 2). The fluorescence OFF-ON sensing mechanism is rationalized by DFT/TDDFT calculations. We demonstrated with DFT calculations that DNBS is ca. 0.76 eV more potent to accept electrons than the maleimide moiety. The probes were used for fluorescent imaging of cellular thiols.  相似文献   

14.
A colorimetric and ratiometric fluorescent probe for selective detection of HSO3- based on the 1,4-nucleophilic addition reaction was successfully synthesized and applied to the detection of exogenous HSO3- in Hela cells and C. elegans.  相似文献   

15.
Macrophages, important cells of the innate immune system, can produce abundant HOCl in the cytoplasm to fight against bacteria. Recent studies suggest that mitochondria in macrophages play a role in antibacterial responses. During bacterial infection, however, it is uncertain whether HOCl is present in the mitochondria, mainly because of the lack of a suitable research method. Herein, by developing a new mitochondrial-targeting fluorescent HOCl probe, combined with confocal fluorescence imaging, we show for the first time that HOCl can appear in the mitochondria of macrophages (Raw264.7 cells) during bacterial infection, as confirmed with non-phagocytic cells and inhibitors as control experiments. Moreover, the developed probe exhibits an accurate mitochondrial-targeting ability, a fast response, and high selectivity and sensitivity (detection limit 9 nM), and is thus expected to be employed for further revealing the biological function of subcellular mitochondria.  相似文献   

16.
The endogenous hypochlorous acid(HOCl) has been evidenced in a variety of cellular courses. However, the role of HOCl in most pathophysiological processes still keeps unclear because of the limited detecting tools. In this work, we presented the pre- paration of a phenothiazine-derived fluorescent probe ClO-1 for HOCl detection with a cyanopyridinium moiety to improve its water solubility and lengthen its emission wavelength. The HOCl-promoted oxidation of sulfur atom in the probe resulted in a 460-fold emission intensity enhancement at 635 nm with high selectivity and sensitivity(detection limit: 1.12 nmol/L). The rapid response(5 s) also endowed the probe with real-time detection ability. Successfully, ClO-1 was devoted to the bioimaging of endogenous HOCl in inflamed RAW 264.7 cells and 5-fluorouracil-treated MCF-7 cells.  相似文献   

17.
Two closely related phenyl selenyl based boron‐dipyrromethene (BODIPY) turn‐on fluorescent probes for the detection of hypochlorous acid (HOCl) were synthesized for studies in chemical biology; emission intensity is modulated by a photoinduced electron‐transfer (PET) process. Probe 2 intrinsically shows a negligible background signal; however, after reaction with HOCl, chemical oxidation of selenium forecloses the PET process, which evokes a significant increase in fluorescence intensity. The fluorescence intensity of probes 1 and 2 with HOCl involves an ~18 and ~50‐fold enhancement compared with the respective responses from other reactive oxygen/nitrogen species (ROS/RNS) and low detection limits (30.9 nm for 1 and 4.5 nm for 2 ). Both probes show a very fast response with HOCl; emission intensity reached a maximum within 1 s. These probes show high selectivity for HOCl, as confirmed by confocal microscopy imaging when testing with RAW264.7 and MCF‐7 cells.  相似文献   

18.
Near-infrared (NIR) fluorescence probes are especially useful for simple and noninvasive in vivo imaging inside the body because of low autofluorescence and high tissue transparency in the NIR region compared with other wavelength regions. However, existing NIR fluorescence probes for matrix metalloproteinases (MMPs), which are tumor, atherosclerosis, and inflammation markers, have various disadvantages, especially as regards sensitivity. Here, we report a novel design strategy to obtain a NIR fluorescence probe that is rapidly internalized by free diffusion and well retained intracellularly after activation by extracellular MMPs. We designed and synthesized four candidate probes, each consisting of a cell permeable or nonpermeable NIR fluorescent dye as a F?rster resonance energy transfer (FRET) donor linked to the NIR dark quencher BHQ-3 as a FRET acceptor via a MMP substrate peptide. We applied these probes for detection of the MMP activity of cultured HT-1080 cells, which express MMP2 and MT1-MMP, by fluorescence microscopy. Among them, the probe incorporating BODIPY650/665, BODIPY-MMP, clearly visualized the MMP activity as an increment of fluorescence inside the cells. We then applied this probe to a mouse xenograft tumor model prepared with HT-1080 cells. Following intratumoral injection of the probe, MMP activity could be visualized for much longer with BODIPY-MMP than with the probe containing SulfoCy5, which is cell impermeable and consequently readily washed out of the tissue. This simple design strategy should be applicable to develop a range of sensitive, rapidly responsive NIR fluorescence probes not only for MMP activity, but also for other proteases.  相似文献   

19.
孙伟  胡德禹  吴志兵  宋宝安  杨松 《有机化学》2011,31(7):997-1010
介绍了近五年来以罗丹明为母体的重金属和过渡金属阳离子荧光分子探针领域的研究进展.文中按照荧光团和识别基团之间连接臂的不同对国内外各研究组的工作进展进行归类总结,并对探针设计的思路、探针的性质和应用给出了简要介绍.  相似文献   

20.
Hypochlorous acid (HOCl), one of the reactive oxygen species (ROS), is a key microbicidal agent which is used for natural defense. However, it is also linked to varieties of human diseases owing to the overproduction of HOCl. Much effort has been made to exploit selective fluorescent sensors for the detection of HOCl, but most of them have some disadvantages such as short excitation wavelength, low selectivity, and slow response and so on. These restrict the biological application of the probes. In this work, BR-O was designed and synthesized on the base of phenoxazine for the detection of HOCl. BR-O exhibited a violent fluorescence enhancement in the presence of HOCl, showing excellent selectivity and high sensitivity. More importantly, the probe BR-O was capable of detecting exogenous and endogenous HOCl in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号