首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four heterometallic, enneanuclear Mn8Ce clusters [Mn8CeO8(O2CMe)12(H2O)4] (4), [Mn8CeO8(O2CMe)12(py)4] (5), [Mn8CeO8(O2CPh)12(MeCN)4] [Mn8CeO8(O2CPh)12(dioxane)4] (6), and [Mn8CeO8(O2CCHPh2)12(H2O)4] (7) have been prepared by various methods. Their cores are essentially isostructural and comprise a nonplanar, saddlelike [MnIII8O8]8+ loop containing a central CeIV ion attached to the eight micro3-O2- ions. Peripheral ligation around the [Mn8CeO8]12+ core is provided by eight micro- and four micro3-O2CR- groups. Terminal ligation on four MnIII atoms is provided by H2O in 4 and 7, pyridine in 5, and MeCN/dioxane in 6. Solid-state magnetic susceptibility studies, fits of dc magnetization vs field and temperature data, and in-phase ac susceptibility studies in a zero dc field have established that complexes 4, 5, and 7 possess S=16, S=4 or 5, and S=6+/-1 spin ground states, respectively, but in all cases there are very low-lying excited states. The large variation in the ground-state spins for this isostructural family is rationalized as due to a combination of weak exchange interactions between the constituent MnIII atoms, and the presence of both nearest-neighbor and next-nearest-interactions of comparable magnitudes. Magnetization vs applied dc field sweeps on single crystals of 4.4H2O and 7.4H2O.3MeCN.2CH2Cl2 down to 0.04 K have established that these two complexes are new single-molecule magnets (SMMs). The former also shows an exchange-bias, a perturbation of its single-molecule properties from very weak intermolecular interactions mediated by hydrogen-bonding interactions with lattice-water molecules of crystallization.  相似文献   

2.
The reaction between 2-(hydroxyethyl)pyridine (hepH) and a 2:1 molar mixture of [Mn3O(O2CMe)6(py)3](ClO4) and [Mn3O(O2CMe)6(py)3](py) in MeCN leads to isolation of [Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 (1) in 10% yield. The complex is 2MnII,16MnIII and consists of a Mn4O6 central unit to either side of which is attached a Mn7O9 unit. Magnetization data collected in the 2.0-4.0 K and 20-50 kG ranges were fit to yield S = 13, g = 1.86, and D = -0.13 cm-1 = -0.19 K, where D is the axial zero-field splitting parameter. AC susceptibility studies in the 0.04-4.0 K range at frequencies up to 996 Hz display out-of-phase (chiM' ') signals, indicative of a single-molecule magnet (SMM). Magnetization vs applied DC field scans exhibit hysteresis at <1.0 K, confirming 1 to be a SMM. DC magnetization decay data were collected on both a microcrystalline sample and a single crystal, and the combined data were used to construct an Arrhenius plot. Between 3.50 and 0.50 K, the relaxation rate is temperature-dependent with an effective barrier to relaxation (Ueff) of 14.8 cm-1 = 21.3 K. Below ca. 0.25 K, the relaxation rate is temperature-independent at 1.3 x 10-8 s-1, indicative of quantum tunneling of magnetization (QTM) between the lowest energy Ms = +/-13 levels of the S = 13 state. Complex 1 is both the largest spin and highest nuclearity SMM to exhibit QTM.  相似文献   

3.
4.
Controlled potential electrolysis (CPE) procedures are described that provide access to complexes with a [Mn4(mu 3-O)3(mu 3-O2CR)]6+ core (3MnIII,MnIV) and a trigonal pyramidal metal topology, starting from species containing the [Mn4(mu 3-O)2]8+ core (4MnIII). [Mn4O2(O2CMe)6(py)2(dbm)2] (6): triclinic, P1, a = 10.868(3) A, b = 13.864(3) A, c = 10.625(3) A, alpha = 108.62(1) degrees, beta = 118.98(1) degrees, gamma = 89.34(2) degrees, V = 1307 A3, Z = 1, T = -131 degrees C, R (Rw) = 3.24 (3.70)%. [Mn4O2(O2CPh)6(py)(dbm)2] (8): monoclinic, P2(1)/c, a = 14.743(6) A, b = 15.536(8) A, c = 30.006(13) A, beta = 102.79(1) degrees, V = 6702 A3, Z = 4, T = -155 degrees C, R (Rw) = 4.32 (4.44)%. Both 6 and 8 contain a [Mn4O2]8+ core; 8 only has one py group, the fourth MnIII site being five-coordinate. (NBun4)[Mn4O2(O2CPh)7(dbm)2] (10) is available from two related procedures. CPE of 10 at 0.65 V vs ferocene in MeCN leads to precipitation of [Mn4O3(O2CPh)4(dbm)3] (11); similarly, CPE of 6 at 0.84 V in MeCN/CH2Cl2 (3:1 v/v) gives [Mn4O3(O2CMe)4(dbm)3] (12). Complex 11: monoclinic, P2(1)/n, a = 15.161(3) A, b = 21.577(4) A, c = 22.683(5) A, beta = 108.04(3) degrees, V = 7056 A3, Z = 4, T = -100 degrees C, R (wR2) = 8.63 (21.80)%. Complex 12: monoclinic, P2(1)/n, a = 13.549(2) A, b = 22.338(4) A, c = 16.618(2) A, beta = 103.74(1) degrees, V = 4885 A3, Z = 4, T = -171 degrees C, R (Rw) = 4.63 (4.45)%. Both 11 and 12 contain a [Mn4(mu 3-O)3(mu-O2CR)] core with a Mn4 trigonal pyramid (MnIV at the apex) and the RCO2- bridging the MnIII3 base. However, in 11, the carboxylate is eta 2,mu 3 with one O atom terminal to one MnIII and the other O atom bridging the other two MnIII ions, whereas in 12 the carboxylate is eta 1,mu 3, a single O atom bridging three MnIII ions. Variable-temperature, solid-state magnetic susceptibility studies on 11 and 12 show that, for both complexes, there are antiferromagnetic exchange interactions between MnIII/MnIV pairs, and ferromagnetic interactions between MnIII/MnIII pairs. In both cases, the resultant ground states of the complex is S = 9/2, confirmed by magnetization vs field studies in the 2.00-30.0 K and 0.50-50 kG temperature and field ranges, respectively.  相似文献   

5.
The synthesis of new dinuclear manganese(IV) complexes possessing the [Mn(IV)(2)(mu-O)(2)(mu-O(2)CMe)](3+) core and containing halide ions as terminal ligands is reported. [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](2)[MnCl(4)] (1; bpy = 2,2'-bipyridine) was prepared by sequential addition of [MnCl(3)(bpy)(H(2)O)] and (NBzEt(3))(2)[MnCl(4)] to a CH(2)Cl(2) solution of [Mn(3)O(4)(O(2)CMe)(4)(bpy)(2)]. The complex [Mn(IV)(2)O(2)(O(2)CMe)Cl(bpy)(2)(H(2)O)](NO(3))(2) (2) was obtained from a water/acetic acid solution of MnCl(2).4H(2)O, bpy, and (NH(4))(2)[Ce(NO(3))(6)], whereas the [Mn(IV)(2)O(2)(O(2)CR)X(bpy)(2)(H(2)O)](ClO(4))(2) [X = Cl(-) and R = Me (3), Et (5), or C(2)H(4)Cl (6); and X = F(-), R = Me (4)] were prepared by a slightly modified procedure that includes the addition of HClO(4). For the preparation of 4, MnF(2) was employed instead of MnCl(2).4H(2)O. [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](2)[MnCl(4)].2CH(2)Cl(2) (1.2CH(2)Cl(2)) crystallizes in the monoclinic space group C2/c with a = 21.756(2) A, b = 12.0587(7) A, c = 26.192(2) A, alpha = 90 degrees, beta = 111.443(2) degrees, gamma = 90 degrees, V = 6395.8(6) A(3), and Z = 4. [Mn(2)O(2)(O(2)CMe)Cl(H(2)O)(bpy)(2)](NO(3))(2).H(2)O (2.H(2)O) crystallizes in the triclinic space group Ponemacr; with a = 11.907(2) A, b = 12.376(2) A, c = 10.986(2) A, alpha = 108.24(1) degrees, beta = 105.85(2) degrees, gamma = 106.57(1) degrees, V = 1351.98(2) A(3), and Z = 2. [Mn(2)O(2)(O(2)CMe)Cl(H(2)O)(bpy)(2)](ClO(4))(2).MeCN (3.MeCN) crystallizes in the triclinic space group Ponemacr; with a = 11.7817(7) A, b = 12.2400(7) A, c = 13.1672(7) A, alpha = 65.537(2) degrees, beta = 67.407(2) degrees, gamma = 88.638(2) degrees, V = 1574.9(2) A(3), and Z = 2. The cyclic voltammogram (CV) of 1 exhibits two processes, an irreversible oxidation of the [MnCl(4)](2)(-) at E(1/2) approximately 0.69 V vs ferrocene and a reversible reduction at E(1/2) = 0.30 V assigned to the [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](+/0) couple (2Mn(IV) to Mn(IV)Mn(III)). In contrast, the CVs of 2 and 3 show only irreversible reduction features. Solid-state magnetic susceptibility (chi(M)) data were collected for complexes 1.1.5H(2)O, 2.H(2)O, and 3.H(2)O in the temperature range 2.00-300 K. The resulting data were fit to the theoretical chi(M)T vs T expression for a Mn(IV)(2) complex derived by use of the isotropic Heisenberg spin Hamiltonian (H = -2JS(1)S(2)) and the Van Vleck equation. The obtained fit parameters were (in the format J/g) -45.0(4) cm(-)(1)/2.00(2), -36.6(4) cm(-)(1)/1.97(1), and -39.3(4) cm(-)(1)/1.92(1), respectively, where J is the exchange interaction parameter between the two Mn(IV) ions. Thus, all three complexes are antiferromagnetically coupled.  相似文献   

6.
The syntheses, structures, and magnetic properties of two new Mn7 complexes containing phenylseleninate ligands are reported. [Mn7O8(O2SePh)8(O2CMe)(H2O)] (1) and [Mn7O8(O2SePh)9(H2O)] (2) were both prepared by the reaction of 18 equiv of benzeneseleninic acid (PhSeO2H) with [Mn12O12(O2CMe)16(H2O)4] in MeCN. Complex 1 x 6MeCN crystallizes in the triclinic space group P, and complex 2 x 2CH2Cl2 crystallizes in the monoclinic space group P2(1)/m. Both compounds possess an unprecedented [Mn7O8]9+ core comprising a central [MnIII3(micro3-O)4]+ unit attached to [MnIV2(micro-O)2]4+ and [MnIV2(micro-O)(micro3-O)]4+ units on either side. In each cluster, the PhSeO2- groups function as bridging ligands between adjacent Mn centers. The structure reveals strong Se.O intermolecular contacts between Mn7 units to give a one-dimensional chain structure, with weak interchain interactions. Solid-state DC magnetic susceptibility measurements of complexes 1 and 2 reveal that they have very similar properties, and detailed studies on 1 by AC susceptibility measurements confirm an S = 2 ground-state spin value. In addition, out-of-phase AC signals are observed, suggesting slow magnetization relaxation. Magnetization versus DC field sweeps down to 0.04 K reveals hysteresis loops, but the temperature dependence of the coercivity is not what is expected of a single-molecule magnet. Instead, the behavior is due to single-chain magnetism, albeit with weak antiferromagnetic interactions between the chains, with the barrier to relaxation arising from a combination of molecular anisotropy and ferromagnetic intermolecular exchange interactions mediated by the Se...O contacts. An Arrhenius plot was constructed from the magnetization versus time decay data. The thermally activated region at > 0.5 K gave an effective relaxation barrier (Ueff) of 14.2 K. Below approximately 0.1 K, the relaxation is independent of temperature, which is characteristic of magnetization quantum tunneling through the anisotropy barrier. These Mn7 compounds are thus the first single-chain magnets to comprise polynuclear metal clusters and also the first for which the temperature-independent relaxation characteristic of tunneling has been identified. The work also emphasizes that out-of-phase AC signals for ostensibly molecular compounds are not sufficient proof by themselves of a single-molecule magnet.  相似文献   

7.
The syntheses, structures, and magnetic properties are reported of the mixed-metal complexes [Ce4Mn10O10(OMe)6(O2CPh)16(NO3)2(MeOH)2(H2O)2] (1) and [Th6Mn10O22(OH)2(O2CPh)16-(NO3)2(H2O)8] (2), which were both prepared by the reaction of (NBun4)[Mn4O2(O2CPh)9(H2O)] (3) with a source of the heterometal in MeCN/MeOH. Complexes 1 and 2 crystallize in the monoclinic space group C2/c and the triclinic space group P, respectively. Complex 1 consists of 10 MnIII, 2 CeIII, and 2 CeIV atoms and possesses a very unusual tubular [Ce4Mn10O10(OMe)6]18+ core. Complex 2 consists of 10 MnIV and 6 ThIV atoms and possesses a [Th6Mn10O22(OH)2]18+ core with the metal atoms arranged in layers with a 2:3:6:3:2 pattern. Peripheral ligation around the cores is provided by 16 bridging benzoates, 2 chelating nitrates, and either (i) 2 each of terminal H2O and MeOH groups in 1 or (ii) 8 terminal H2O groups in 2. Complex 1 is the largest mixed-metal Ce/Mn cluster and the first 3d/4f cluster with mixed-valency in its lanthanide component, while complex 2 is the first Th/Mn cluster and the largest mixed transition metal/actinide cluster to date. Solid-state dc and ac magnetic susceptibility measurements on 1 and 2 establish that they possess S = 4 and 3 ground states, respectively. Ac susceptibility studies on 1 revealed nonzero frequency-dependent out-of-phase (chiM' ') signals at temperatures below 3 K; complex 2 displays no chiM' ' signals. However, single-crystal magnetization vs dc field scans at variable temperatures and variable sweep-rates down to 0.04 K on 1 revealed no noticeable hysteresis loops, except very minor ones at 0.04 K assignable to weak intermolecular interactions propagated by hydrogen bonds involving CeIII-bound ligands. Complex 1 is thus concluded not to be a single-molecule magnet (SMM), and the combined results thus represent a caveat against taking such ac signals as sufficient proof of a SMM.  相似文献   

8.
The reaction of 2-(hydroxyethyl)pyridine (hepH) with a 2:1 molar mixture of [Mn3O(O2CMe)6(py)3]ClO4 and [Mn3O(O2CMe)6(py)3] in MeCN afforded the new mixed-valent (16Mn(III), 2Mn(II)), octadecanuclear complex [Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 (1) in 20% yield. Complex 1 crystallizes in the triclinic space group P. Direct current magnetic susceptibility studies in a 1.0 T field in the 5.0-300 K range, and variable-temperature variable-field dc magnetization studies in the 2.0-4.0 K and 2.0-5.0 T ranges were obtained on polycrystalline samples. Fitting of magnetization data established that complex 1 possesses a ground-state spin of S = 13 and D = -0.18 K. This was confirmed by the value of the in-phase ac magnetic susceptibility signal. Below 3 K, the complex exhibits a frequency-dependent drop in the in-phase signal, and a concomitant increase in the out-of-phase signal, consistent with slow magnetization relaxation on the ac time scale. This suggests the complex is a single-molecule magnet (SMM), and this was confirmed by hysteresis loops below 1 K in magnetization versus dc field sweeps on a single crystal. Alternating current and direct current magnetization data were combined to yield an Arrhenius plot from which was obtained the effective barrier (U(eff)) for magnetization reversal of 21.3 K. Below 0.2 K, the relaxation becomes temperature-independent, consistent with relaxation only by quantum tunneling of the magnetization (QTM) through the anisotropy barrier via the lowest-energy MS = +/-13 levels of the S = 13 spin manifold. Complex 1 is thus the SMM with the largest ground-state spin to display QTM.  相似文献   

9.
The preparation, X-ray structure, and detailed physical characterization are presented for a new type of single-molecule magnet [Mn4(O2CMe)2(pdmH)6](ClO4)2 (1). Complex 1.2MeCN.Et2O crystallizes in the triclinic space group P1, with cell dimensions at 130 K of a = 11.914(3) A, b = 15.347(4) A, c = 9.660(3) A, alpha = 104.58(1) degree, beta = 93.42(1) degree, gamma = 106.06(1) degree, and Z = 1. The cation lies on an inversion center and consists of a planar Mn4 rhombus that is mixed-valent, MnIII2MnII2. The pdmH- ligands (pdmH2 is pyridine-2,6-dimethanol) function as either bidentate or tridentate ligands. The bridging between Mn atoms is established by either a deprotonated oxygen atom of a pdmH- ligand or an acetate ligand. The solvated complex readily loses all acetonitrile and ether solvate molecules to give complex 1, which with time becomes hydrated to give 1.2.5H2O. Direct current and alternating current magnetic susceptibility data are given for 1 and 1.2.5H2O and indicate that the desolvated complex has a S = 8 ground state, whereas the hydrated 1.2.5H2O has a S = 9 ground state. Ferromagnetic interactions between MnIII-MnII and MnIII-MnIII pairs result in parallel spin alignments of the S = 5/2 MnII and S = 2 MnIII ions. High-frequency EPR spectra were run for complex 1.2.5H2O at frequencies of 218, 328, and 436 GHz in the 4.5-30 K range. A magnetic-field-oriented polycrystallite sample was employed. Fine structure is clearly seen in this parallel-field EPR spectrum. The transition fields were least-squares-fit to give g = 1.99, D = -0.451 K, and B4 degrees = 2.94 x 10(-5) K for the S = 9 ground state of 1.2.5H2O. A molecule with a large-spin ground state with D < 0 can function as a single-molecule magnet, as detected by techniques such as ac magnetic susceptibility. Out-of-phase ac signals (chi' M) were seen for complexes 1 and 1.2.5H2O to show that these complexes are single-molecule magnets. A sample of 1 was studied by ac susceptibility in the 0.4-6.4 K range with the ac field oscillating at frequencies in the 1.1-1000 Hz range. A single peak in chi' M vs temperature plots was seen for each frequency; the temperature of the chi' M peak varies from 2.03 K at 995 Hz to 1.16 K at 1.1 Hz. Magnetization relaxation rates were evaluated in this way. An Arrhenius plot gave an activation energy of 17.3 K, which, as expected, is less than the 22.4 K value calculated for the thermodynamic barrier for magnetization direction reversal for an S = 8 complex with D = -0.35 K. The 1.2.5H2O complex with an S = 9 ground state has its chi' M peaks at higher temperatures.  相似文献   

10.
The syntheses of the first mixed-metal CeIVMnIV complexes are reported. [CeMn2O3(O2CMe)(NO3)4(H2O)2(bpy)2](NO3) (1; bpy=2,2'-bipyridine) was obtained from the reaction of Mn(NO3)2.xH2O and bpy with (NH4)2Ce(NO3)6 in a 1:1:2 molar ratio in 25% aqueous acetic acid. The complexes [CeMn6O9(O2CR)9(X)(H2O)2]y+ (R=Me, X=NO3-, y=0 (2); R=Me, X=MeOH, y=+1 (3); R=Et, X=NO3-, y=0 (7)) were obtained from reactions involving a [Mn(O2CR)2].4H2O/CeIV ratio of approximately 1:1.5 in concentrated aqueous carboxylic acid. A related reaction in less-concentrated aqueous acetic acid and in the presence of L (where L=2-hydroxy-6-methylpyridine (mhpH), 2-pyrrolidinone (pyroH), or pyridine (py)) gave [Ce3Mn2O6(O2CMe)6(NO3)2(L)a(H2O)b] (L=mhpH, a=4, b=0 (4); L=pyroH, a=2, b=3 (5)) and {{(pyH)3[Ce3Mn2O6(O2CMe)7.5(NO3)3].(HO2CMe)0.5.(H2O)2}2(NO3)}n (6), respectively. Solid-state magnetic susceptibility (chiM) data for compounds 1, 4, and 5 were fit to the theoretical chiMT versus T expression for a MnIV2 complex derived using the isotropic Heisenberg spin Hamiltonian (H=-2J?1? 2) and the Van Vleck equation. The obtained fit parameters were (in the format J, g) 1, -45.7(3) cm(-1), 1.95(5); 4, -0.40(10) cm(-1), 2.0(1); and 5, -0.34(10) cm(-1), 2.0(1), where J is the exchange interaction constant between the two MnIV ions. The data for compound 3 were fit by a matrix diagonalization method that gave J1=-5.8 cm(-1), J2=-0.63 cm(-1), J3 approximately 0, and g=2.0(1), where J1 and J2 are the exchange interactions for the [MnIV2O2(Omicron2CMe)] and [MnIV2O(Omicron2CMe)2] units, respectively, and J3 for a uniform next-nearest-neighbor interaction. Theoretical estimates of the exchange constants in compounds 1 and 3 obtained with the ZILSH method were in excellent and good agreement, respectively, with the values obtained from fits of the magnetization data. The difference for 3 is assigned to the presence of the Ce4+ ion, and atomic bond indices obtained from the ZILSH calculations were used to rationalize the values of the various exchange constants based on metal-ligand bond strengths.  相似文献   

11.
The use has been explored of both azide (N3-) and alkoxide-containing groups such as the anions of 2-(hydroxymethyl)pyridine (hmpH), 2,6-pyridinedimethanol (pdmH2), 1,1,1-tris(hydroxymethyl)ethane (thmeH3) and triethanolamine (teaH3) in Mn cluster chemistry. The 1:1:1:1 reactions of hmpH, NaN3 and NEt3 with Mn(ClO4)(2).6H 2O or Mn(NO3)2.H2O in MeCN/MeOH afford [MnII4MnIII6O4(N3)4(hmp)12](X)2 [X=ClO4- (1), N3- (2)]. The [Mn10(mu4-O) 4(mu3-N3)4]14+ core of the cation has a tetra-face-capped octahedral topology, with a central MnIII6 octahedron, whose eight faces are bridged by four mu 3-N3- and four mu 4-O2- ions, the latter also bridging to four extrinsic MnII atoms. The core has Td symmetry, but the complete [MnII4MnIII6O4(N3)4(hmp)12]2+ cation has rare T symmetry, which is crystallographically imposed. A similar reaction of Mn(ClO4) (2).6H2O with one equiv each of NaN3, thmeH3, pdmH2, and NEt3 in MeCN/MeOH led to [MnII4MnIII6O2(N3)6(pdmH)4(thme)4] (3). Complex 3 is at the same oxidation level as 1/2 but its core is structurally different, consisting of two edge-fused [MnII2MnIII4(mu4-O)]14+ octahedra. Replacement of thmeH3 with teaH3 in this reaction gave instead [MnII2MnIII2(N3)4(pdmH)2(teaH)2] (4), containing a planar Mn 4 rhombus. Variable-temperature, solid-state dc and ac magnetization studies were carried out on 1-4 in the 5.0-300 K range. Complexes 1 and 2 are completely ferromagnetically coupled with a resulting S=22 ground state, one of the highest yet reported. Fits of dc magnetization vs field (H) and temperature (T) data by matrix diagonalization gave S=22, g=2.00, and D approximately 0.0 cm(-1) (D is the axial zero-field splitting parameter). In contrast, the data for 3 revealed dominant antiferromagnetic interactions and a resulting S=0 ground state. Complex 4 contains weakly ferromagnetically coupled Mn atoms, leading to an S=9 ground-state and low-lying excited states, and exhibits out-of-phase ac susceptibility signals characteristic of a single-molecule magnet. Theoretical values of the exchange constants in 1 obtained with density functional theory and ZILSH calculations were in good agreement with experimental values. The combined work demonstrates the synthetic usefulness of alcohol-based chelates and azido ligands when used together, and the synthesis in the present work of two "isomeric" MnIII6MnII4 cores that differ in spin by a remarkable 22 units.  相似文献   

12.
The use of di-2-pyridyl ketone oxime, (py)2CNOH, in manganese carboxylate chemistry has been investigated. Using a variety of synthetic routes complexes [Mn(O2CPh)2{(py)2CNOH}2].0.25H2O (1.0.25H2O), Mn4(O2CPh)2{(py)2CO2}2{(py)2CNO}2Br2].MeCN (2.MeCN), [Mn4(O2CPh)2{(py)2CO2}2{(py)2CNO}2Cl(2)].2MeCN (3.2MeCN), [Mn4(O2CMe)2{(py)2CO2}2{(py)2CNO}2Br2].2MeCN (4.2MeCN), [Mn4(O2CMe)2{(py)2CO2}2{(py)2CNO}2(NO3)2].MeCN.H2O (5.MeCN.H2O) and [Mn2(O2CCF3)2(hfac)2{(py)2CNOH}2] (6) have been isolated in good yields. Remarkable features of the reactions are the in situ transformation of an amount of (py)2CNOH to yield the coordination dianion, (py)2CO2(2-), of the gem-diol derivative of di-2-pyridyl ketone in 2-5, the coordination of nitrate ligands in 5 although the starting materials are nitrate-free and the incorporation of CF3CO2- ligands 6 in which was prepared from Mn(hfac)(2).3H2O (hfac(-)= hexafluoroacetylacetonate). Complexes 2-4 have completely analogous molecular structures. The centrosymmetric tetranuclear molecule contains two MnII and two MnIII six-coordinate ions held together by four mu-oxygen atoms from the two 3.2211 (py)2CO2(2-) ligands to give the unprecedented [MnII(mu-OR)MnIII(mu-OR)2MnIII(mu-OR)MnII]6+ core consisting of a planar zig-zag array of the four metal ions. Peripheral ligation is provided by two 2.111 (py)2CNO-, two 2.11 PhCO2- and two terminal Br- ligands. The overall molecular structure 5 of is very similar to that of 2-4 except for the X- being chelating NO3-. A tentative reaction scheme was proposed that explains the observed oxime transformation and nitrate generation. The CF3CO2- ligand is one of the decomposition products of the hfac- ligand. The two Mn(II) ions are bridged by two neutral (py)2CNOH ligands which adopt the 2.0111 coordination mode. A chelating hfac- ligand and a terminal CF3CO2- ion complete a distorted octahedral geometry at each metal ion. The CV of complex reveals irreversible reduction and oxidation processes. Variable-temperature magnetic susceptibility studies in the 2-300 K range for the representative tetranuclear clusters 2 and 4 reveal weak antiferromagnetic exchange interactions, leading to non-magnetic ST = 0 ground states. Best-fit parameters obtained by means of the program CLUMAG and applying the appropriate Hamiltonian are J(Mn(II)Mn((III))=-1.7 (2), -1.5 (4) cm(-1) and J(Mn(III)Mn(III))=-3.0 (2, 4) cm(-1).  相似文献   

13.
The employment of the anion of 2,6-diacetylpyridine dioxime (dapdoH2) as a pentadentate chelate in transition metal cluster chemistry is reported. The syntheses, crystal structures, and magnetochemical characterization are described for [Mn6O2(OMe)2(dapdo)2(dapdoH)4](ClO4)2 (1), [Mn6O2(OMe)2(dapdo)2(dapdoH)4][Ca(NO3)4] (2), and [Mn8O4(OH)4(OMe)2(N3)2(dapdo)2(dapdoH)2(H2O)2] (3). The reaction of [Mn3O(O2CMe)6(py)3](ClO4) with 3 equiv of dapdoH2 (with or without 2 equiv of NEt3) in MeOH gave 1. The same cation, but with a [Ca(NO3)4]2- anion, was found in complex 2, which was obtained from the reaction in MeOH between Mn(NO3)2, Ca(NO3)2, and dapdoH2 in the presence of NEt3. In contrast, addition of NaN3 to several reactions comprising MnCl2, dapdoH2, and NEt3 in MeOH gave the octanuclear complex 3. Complexes 1-3 all possess rare topologies and are mixed-valence: 2MnII, 4MnIII for 1 and 2, and 2MnII, 6MnIII for 3. The core of the cation of 1 and 2 consists of two edge-sharing Mn4 tetrahedra at the center of each of which is a micro4-O2- ion. Peripheral ligation is provided by two micro-OMe-, four micro-dapdoH-, and two micro3-dapdo2- groups. The core of 3 consists of two [MnIIMnIII3(micro3-O)2]7+ "butterfly" units linked together by one of the micro3-O2- ions, which thus becomes micro4. Peripheral ligation is provided by four micro-OMe-, two micro-OH-, two micro-dapdoH-, and two micro4-dapdo2- groups. Variable-temperature, solid-state dc and ac magnetization studies were carried out on complexes 1-3 in the 5.0-300 K range; the data for 1 and 2 are identical. Fitting of the obtained magnetization versus field (H) and temperature (T) data by matrix diagonalization and including only axial anisotropy (zero-field splitting, D) established that 1 possesses an S=5 ground state with D=-0.24 cm(-1). For 3, low-lying excited states precluded obtaining a good fit from the magnetization data, and the ground state was instead determined from the ac data, which indicated an S=1 ground state for 3. The combined work demonstrates the ligating flexibility of pyridyl-dioxime chelates and their usefulness in the synthesis of new polynuclear Mnx clusters without requiring the co-presence of carboxylate ligands.  相似文献   

14.
The reaction of N-(2-hydroxy-5-nitrobenzyl)iminodiethanol (=H3(5-NO2-hbide)) with Mn(OAc)2* 4 H2O in methanol, followed by recrystallization from 1,2-dichloroethane, yielded a wheel-shaped single-molecule magnet (SMM) of [MnII 3MnIII 4(5-NO2-hbide)6].5 C2H4Cl2 (1). In 1, seven manganese ions are linked by six tri-anionic ligands and form the wheel in which the two manganese ions on the rim and the one in the center are MnII and the other four manganese ions are MnIII ions. Powder magnetic susceptibility measurements showed a gradual increase with chimT values as the temperature was lowered, reaching a maximum value of 53.9 emu mol(-1) K. Analyses of magnetic susceptibility data suggested a spin ground state of S=19/2. The zero-field splitting parameters of D and B 0 4 were estimated to be -0.283(1) K and -1.64(1)x10(-5) K, respectively, by high-field EPR measurements (HF-EPR). The anisotropic parameters agreed with those estimated from magnetization and inelastic neutron scattering experiments. AC magnetic susceptibility measurements showed frequency-dependent in- and out-of-phase signals, characteristic data for an SMM, and an Arrhenius plot of the relaxation time gave a re-orientation energy barrier (DeltaE) of 18.1 K and a pre-exponential factor of 1.63x10(-7) s. Magnetization experiments on aligned single crystals below 0.7 K showed a stepped hysteresis loop, confirming the occurrence of quantum tunneling of the on magnetization (QTM). QTM was, on the other hand, suppressed by rapid sweeps of the magnetic field even at 0.5 K. The sweep-rate dependence of the spin flips can be understood by considering the Landau-Zener-Stückelberg (LZS) model.  相似文献   

15.
The syntheses, crystal structures, and magnetochemical characterization are reported for three new mixed-valent Mn clusters [Mn(8)O(3)(OH)(OMe)(O(2)CPh)7(edte)(edteH(2))](2)CPh) (1), [Mn(12)O(4)(OH)(2)(edte)(4)C(l6)(H(2)O)(2)] (2), and [Mn(20)O(8)(OH)(4)(O(2)CMe)(6)(edte)(6)](ClO(4))(2) (3) (edteH(4) = (HOCH(2)CH(2))(2)NCH(2)CH(2)N(CH(2)CH(2)OH)(2) = N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine). The reaction of edteH(4) with Mn(O(2)CPh)(2), MnCl(2), or Mn(O(2)CMe)(2) gives 1, 2, and 3, respectively, which all possess unprecedented core topologies. The core of 1 comprises two edge-sharing [Mn(4)O(4)] cubanes connected to an additional Mn ion by a micro(3)-OH- ion and two alkoxide arms of edteH(22-). The core of 2 consists of a [Mn(12)(micro(4-)O)(4)](24+) unit with S4 symmetry. The core of 3 consists of six fused [Mn(4)O(4)] cubanes in a 3 x 2 arrangement and linked to three additional Mn atoms at both ends. Variable-temperature, solid-state dc and ac magnetization (M) studies were carried out on complexes 1-3 in the 5.0-300 K range. Fitting of the obtained M/Nmicro(B) vs H/T data by matrix diagonalization and including only axial zero-field splitting (ZFS) gave ground-state spin (S) and axial ZFS parameter (D) of S = 8, D = -0.30 cm-1 for 1, S = 7, D = -0.16 cm-1 for 2, and S = 8, D = -0.16 cm-1 for 3. The combined work demonstrates that four hydroxyethyl arms on an ethylenediamine backbone can generate novel Mn structural types not accessible with other alcohol-based ligands.  相似文献   

16.
The syntheses, structures, and magnetic properties are reported of [Mn12O12(O2CPe(t))16(MeOH)4] (4), [Mn6O2(O2CH2)(O2CPe(t))11(HO2CPe(t))2(O2CMe)] (5), [Mn9O6(OH)(CO3)(O2CPe(t))12(H2O)2] (6), and [Mn4O2(O2CPe(t))6(bpy)2] (7, bpy = 2,2'-bipyridine), where Pe(t) = tert-pentyl (Pe(t)CO2H = 2,2-dimethylbutyric acid). These complexes were all prepared from reactions of [Mn12O12(O2CPe(t))16(H2O)4] (3) in CH2Cl2. Complex 4 x 2MeCN crystallizes in the triclinic space group P1 and contains a central [Mn(IV)4O4] cubane core that is surrounded by a nonplanar ring of eight alternating Mn(III) and eight mu3-O(2-) ions. This is only the third Mn12 complex in which the four bound water molecules have been replaced by other ligands, in this case MeOH. Complex 5 x (1/2)CH2Cl2 crystallizes in the monoclinic space group P2(1)/c and contains two [Mn3(mu3-O)]7+ units linked at two of their apexes by two Pe(t)CO2(-) ligands and one mu4-CH2O2(2-) bridge. The complex is a new structural type in Mn chemistry, and also contains only the third example of a gem-diolate unit bridging four metal ions. Complex 6 x H2O x Pe(t)CO2H crystallizes in the orthorhombic space group Cmc2(1) and possesses a [Mn(III)9(mu3-O)6(mu-OH)(mu3-CO3)]12+ core. The molecule contains a mu3-CO3(2-) ion, the first example in a discrete Mn complex. Complex 7 x 2H2O crystallizes in the monoclinic space group P2(1)/c and contains a known [Mn(III)2Mn(II)2(mu3-O)2]6+ core that can be considered as two edge-sharing, triangular [Mn3O] units. Additionally, the synthesis and magnetic properties of a new enneanuclear cluster of formula [Mn9O7(O2CCH2Bu(t))13(THF)2] (8, THF = tetrahydrofuran) are reported. The molecule was obtained by the reaction of [Mn12O12(O2CCH2Bu(t))16(H2O)4] (2) with THF. Complexes 2 and 4 display quasireversible redox couples when examined by cyclic voltammetry in CH2Cl2; oxidations are observed at -0.07 V (2) and -0.21 V (4) vs ferrocene. The magnetic properties of complexes 4-8 have been studied by direct current (DC) and alternating current (AC) magnetic susceptibility techniques. The ground-state spin of 4 was established by magnetization measurements in the 1.80-4.00 K and 0.5-7 T ranges. Fitting of the reduced magnetization data by full matrix diagonalization, incorporating a full powder average and including only axial anisotropy, gave S = 10, g = 2.0(1), and D = -0.39(10) cm(-1). The complex exhibits two frequency-dependent out-of-phase AC susceptibility signals (chi(M)') indicative of slow magnetization relaxation. An Arrhenius plot obtained from chi(M)' vs T data gave an effective energy barrier to relaxation (U(eff)) of 62 and 35 K for the slower and faster relaxing species, respectively. These studies suggest that complex 4 is a single-molecule magnet (SMM). DC susceptibility studies on complexes 5-8 display overall antiferromagnetic behavior and indicate ground-state spin values of S < or = 2. AC susceptibility studies at < 10 K confirm these small values and indicate the population of low-lying excited states even at these low temperatures. This supports the small ground-state spin values to be due to spin frustration effects.  相似文献   

17.
The reaction between 3-phenyl-1,5-bis(pyridin-2-yl)pentane-1,5-dione dioxime (pdpdH(2)) and triangular [Mn(III)(3)O(O(2)CMe)(py)(3)](ClO(4)) (1) affords [Mn(12)O(4)(O(2)CMe)(12)(pdpd)(6))](ClO(4))(4) (3). Complex 3 has a rectangular shape and consists of four [Mn(III)(3)O](7+) triangular units linked covalently by the dioximate ligands into a supramolecular [Mn(3)](4) tetramer. Solid-state dc and ac magnetic susceptibility measurements revealed that [Mn(3)](4) contains four Mn(3) single-molecule magnets (SMMs), each with an S = 6 ground state. Magnetization versus dc-field sweeps on a single crystal gave hysteresis loops below 1 K that exhibited exchange-biased quantum tunneling of magnetization steps, confirming 3 to be a supramolecular aggregate of four weakly exchange-coupled SMM units.  相似文献   

18.
We have structurally and magnetically characterized a total of 12 complexes based on the Single-Molecule Magnet (SMM) [MnIII6O2(sao)6(O2CH)2(MeOH) 4] (1) (where sao2- is the dianion of salicylaldoxime or 2-hydroxybenzaldeyhyde oxime) that display analogous structural cores but remarkably different magnetic behaviors. Via the use of derivatized oxime ligands and bulky carboxylates we show that it is possible to deliberately increase the value of the spin ground state of the complexes [Mn6O2(Me-sao)6(O2CCPh3)2(EtOH)4] (2), [Mn6O2(Et-sao)6(O2CCMe3)2(EtOH)5] (3), [Mn6O2(Et-sao)6(O2CPh2OPh)2(EtOH)4] (4), [Mn6O2(Et-sao)6(O2CPh4OPh)2(EtOH)4(H2O)2] (5), [Mn6O2(Me-sao)6(O2CPhBr)2(EtOH)6] (6), [Mn6O2(Et-sao)6(O2CPh)2(EtOH)4(H2O)2] (7), [Mn6O2(Et-sao)6{O2CPh(Me)2}2(EtOH)6] (8), [Mn6O2(Et-sao)6(O2C11H15)2(EtOH)6] (9), [Mn6O2(Me-sao)6(O2C-th)2(EtOH)4(H2O)2] (10), [Mn6O2(Et-sao)6(O2CPhMe)2(EtOH)4(H2O)2] (11), and [Mn6O2(Et-sao)6(O2C12H17)2(EtOH)4(H2O)2] (12) (Et-saoH2 = 2-hydroxypropiophenone oxime, Me-saoH2 = 2-hydroxyethanone oxime, HO2CCPh3 = triphenylacetic acid, HO2CCMe3 = pivalic acid, HO2CPh2OPh = 2-phenoxybenzoic acid, HO2CPh4OPh = 4-phenoxybenzoic acid, HO2CPhBr = 4-bromobenzoic acid, HO2CPh(Me)2 = 3,5-dimethylbenzoic acid, HO2C11H15 = adamantane carboxylic acid, HO2C-th = 3-thiophene carboxylic acid, HO2CPhMe = 4-methylbenzoic acid, and HO2C12H17 = adamantane acetic acid) in a stepwise fashion from S = 4 to S = 12 and, in-so-doing, enhance the energy barrier for magnetization reorientation to record levels. The change from antiferromagnetic to ferromagnetic exchange stems from the "twisting" or "puckering" of the (-Mn-N-O-)3 ring, as evidenced by the changes in the Mn-N-O-Mn torsion angles.  相似文献   

19.
The reaction of di-2-pyridyl ketone, (2-py)2CO, with Ni(O2CMe)(2).4H2O yields the cage [Ni9(OH)2(O2CMe)8((2-py)2CO2)4], which reacts further with N3- ions to give the structurally similar cluster [Ni9(N3)2(O2CMe)8((2-py)2CO2)4] containing extremely rare eta 1,mu 4-N3- groups; magnetic studies reveal that the spin ground state of the latter is nine times the ground state of the former.  相似文献   

20.
The first high nuclearity, mixed-metal Bi(III)/Mn(IV) and Bi(III)/Mn(III) complexes are reported. The former complexes are [Bi(2)Mn(IV)(6)O(9)(O(2)CEt)(9)(HO(2)CEt)(NO(3))(3)] (1) and [Bi(2)Mn(IV)(6)O(9)(O(2)CPh)(9)(HO(2)CPh)(NO(3))(3)] (2) and were obtained from the comproportionation reaction between Mn(O(2)CR)(2) and MnO(4)(-) in a 10:3 ratio in the presence of Bi(NO(3))(3) (3 equiv) in either a H(2)O/EtCO(2)H (1) or MeCN/PhCO(2)H (2) solvent medium. The same reaction that gives 2, but with Bi(O(2)CMe)(3) and MeNO(2) in place of Bi(NO(3))(3) and MeCN, gave the lower oxidation state product [BiMn(III)(10)O(8)(O(2)CPh)(17)(HO(2)CPh)(H(2)O)] (3). Complexes 1 and 2 are near-isostructural and possess an unusual and high symmetry core topology consisting of a Mn(IV)(6) wheel with two central Bi(III) atoms capping the wheel on each side. In contrast, the [BiMn(III)(10)O(8)](17+) core of 3 is low symmetry, comprising a [BiMn(3)(μ(3)-O)(2)](8+) butterfly unit, four [BiMn(3)(μ(4)-O)](10+) tetrahedra, and two [BiMn(2)(μ(3)-O)](7+) triangles all fused together by sharing common Mn and Bi vertices. Variable-temperature, solid-state dc and ac magnetization data on 1-3 in the 1.8-300 K range revealed that 1 and 2 possess an S = 0 ground state spin, whereas 3 possesses an S = 2 ground state. The work offers the possibility of access to molecular analogs of the multifunctional Bi/Mn/O solids that are of such great interest in materials science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号