首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Dermatophytes are fungi that cause infections of keratinized tissues. We have recently demonstrated the susceptibility of the dermatophyte Trichophyton rubrum to photodynamic treatment (PDT) with 5,10,15-Tris(4-methylpyridinium)-20-phenyl-[21 H ,23 H ]-porphine trichloride (Sylsens B) in 5 m m citric acid/sodium citrate buffer (pH 5.2, formulation I). In this work, we examined the penetration of Sylsens B in healthy and with T. rubrum infected skin and we investigated the susceptibility of T. rubrum to PDT using formulation I and UVA-1 radiation (340–550 nm). Skin penetration studies were performed with formulations I and II (Sylsens B in PBS, pH 7.4) applied on dermatomed skin, human stratum corneum (SC), disrupted SC by T. rubrum growth and SC pretreated with a detergent. No penetration was observed in healthy skin. Disruption of SC by preceding fungal growth caused Sylsens B penetration at pH 7.4, but not at pH 5.2. However, chemically damaged SC allowed Sylsens B to penetrate also at pH 5.2. UVA-1 PDT was applied ex vivo during two fungal growth stages of two T. rubrum strains (CBS 304.60 and a clinical isolate). Both strains could be killed by UVA-1 alone (40 J/cm2). Combined with formulation I (1 and 10 μ m Sylsens B for, respectively, CBS 304.60 and the clinical isolate), only 18 J/cm2 UVA-1 was required for fungal kill. Therefore, PDT with 10 μ m Sylsens B (formulation I) and 18 J/cm2 UVA-1 could be considered as effective and safe. This offers the possibility to perform clinical studies in future.  相似文献   

2.
The application of photosensitizers for the treatment of fungal infections is a new and promising development within the field of photodynamic treatment (PDT). Dermatophytes, fungi that can cause infections of the skin, hair and nails, are able to feed on keratin. Superficial mycoses are probably the most prevalent of infectious diseases in all parts of the world. One of the most important restrictions of the current therapeutic options is the return of the infection and the duration of the treatment. This is especially true in the case of infections of the nail (tinea unguium) caused by Trichophyton rubrum, an anthropophilic dermatophyte with a worldwide distribution. Recently, we demonstrated that 5,10,15-tris(4-methylpyridinium)-20-phenyl-[21H,23H]-porphine trichloride (Sylsens B) and deuteroporphyrin monomethylester were excellent photosensitizers toward T. rubrum when using broadband white light. This study demonstrates the photodynamic activity of these photosensitizers with red light toward both a suspension culture of T. rubrum and its isolated microconidia. The higher penetration depth of red light is important for the PDT of nail infections. In addition, we tested the photodynamic activity of a newly synthesized porphyrin, quinolino-[4,5,6,7-efg]-7-demethyl-8-deethylmesoporphyrin dimethylester, displaying a distinct peak in the red part of the spectrum. However, its photodynamic activity with red light toward a suspension culture of T. rubrum appeared to be only fungistatic. Sylsens B was the best photosensitizer toward both T. rubrum and its microconidia. A complete inactivation of the fungal spores and destruction of the fungal hyphae was found. In studies into the photostability, Sylsens B appeared to be photostable under the conditions used for fungal PDT. A promising result of this study is the demonstration of the complete degradation of the fungal hyphae in the time after the PDT and the inactivation of fungal spores, both with red light. These results offer the ingredients for a future treatment of fungal infections, including those of the nail.  相似文献   

3.
Dermatophytes are fungi that can cause infections (known as tinea) of the skin, hair and nails because of their ability to use keratin. Superficial mycoses are probably the most prevalent of infectious diseases worldwide. One of the most distinct limitations of the current therapeutic options is the recurrence of the infection and duration of treatment. The present study shows that Trichophyton rubrum in suspension culture is susceptible to photodynamic treatment (PDT), a completely new application in this area. T. rubrum could be effectively killed with the use of the light-activated porphyrins deuteroporphyrin monomethylester (DP mme) and 5,10,15-tris(4-methylpyridinium)-20-phenyl-[21H,23H]-porphine trichloride (Sylsens B). The photodynamic efficacy was compared with that of some other photosensitizers that are well known in the field of PDT: the porphyrins deuteroporphyrin and hematoporphyrin, the drug Photofrin and several phthalocyanines. It was demonstrated that with the use of broadband white light, the phthalocyanines and Photofrin displayed a fungistatic effect for about 1 week, whereas all the porphyrins caused photodynamic killing of the dermatophyte. Sylsens B was the most effective sensitizer and showed no dark toxicity; therefore, in an appropriate formulation, it could be a promising candidate for the treatment of various forms of tinea. For Sylsens B and DP mme, which displayed the best results, a concentration-dependent uptake by T. rubrum was established.  相似文献   

4.
Photodynamic therapy (PDT) is a two-step procedure, involving the topical or systemic administration of a photosensitizer followed by selective illumination of the target lesion with visible light, which triggers the oxidative photodamage and subsequent cell death within the target area. In dermatology, PDT has proven to be a useful treatment for a variety of malignant tumors and selected inflammatory diseases. In addition, PDT of several infective viral or bacterial skin diseases has been investigated. These investigations grew out of the positive findings of studies of another important use of PDT: that of disinfection of blood products. Up to now, little has been published concerning the application of PDT to fungi, probably due to the fact that research funding has been mainly directed towards blood disinfection, and these pathogens show a low risk of transfusion transmission. However, preliminary findings have demonstrated that dermatophytes and yeasts can be effectively sensitized in vitro by administering photosensitizers belonging to four chemical groups: phenothiazine dyes, porphyrins and phthalocyanines, as well as aminolevulinic acid, which, while not a photosensitizer in itself, is effectively metabolized into protoporphyrin IX. Besides efficacy, PDT has shown other benefits. First, the sensitizers used are highly selective, i.e., fungi were killed at combinations of drug and light doses much lower than that needed for a similar effect on keratinocytes. Second, all investigated photosensitizers lack genotoxic and mutagenic activity. Finally, the hazard of selection of drug resistant fungal strains was never reported. This paper intends to provide a comprehensive overview of investigative studies about the effects of PDT on yeasts and dermatophytes, and bring attention to this application of PDT which we believe very important in that skin mycosis is so common and PDT is not only cost-effective, but also has the advantages of being highly selective and avoiding the occurrence of drug resistant strains.  相似文献   

5.
The growing resistance against antifungal drugs has renewed the search for alternative treatment modalities, and antimicrobial photodynamic therapy (PDT) seems to be a potential candidate. Preliminary findings have demonstrated that dermatophytes and yeasts can be effectively sensitized in vitro and in vivo by administering photosensitizers (PSs) belonging to four chemical groups: phenothiazine dyes, porphyrins and phthalocyanines, as well as aminolevulinic acid, which, while not a PS in itself, is effectively metabolized into protoporphyrin IX. Besides efficacy, PDT has shown other benefits. First, the sensitizers used are highly selective, i.e., fungi can be killed at combinations of drug and light doses much lower than that needed for a similar effect on keratinocytes. Second, all investigated PSs lack genotoxic and mutagenic activity. Finally, the hazard of selection of drug resistant fungal strains has been rarely reported. We review the studies published to date on antifungal applications of PDT, with special focus on yeast, and aim to raise awareness of this area of research, which has the potential to make a significant impact in future treatment of fungal infections.  相似文献   

6.
Photodynamic therapy (PDT) relies on three main ingredients, oxygen, light and photoactivating compounds, although the PDT response is definitively contingent on the site and level of reactive oxygen species (ROS) generation. This study describes the development of a novel, fluorescent-based actinometer microsphere system as a means of discerning spatially resolved dosimetry of total fluence and ROS production. Providing a high resolution, localized, in situ measurement of fluence and ROS generation is critical for developing in vivo PDT protocols. Alginate-poly-L-lysine-alginate microspheres were produced using ionotropic gelation of sodium alginate droplets, ranging from 80 to 200 microm in diameter, incorporating two dyes, ADS680WS (ADS) and Rhodophyta-phycoerythrin (RPE), attached to the spheres' inside and outside layers, respectively. To test the responsivity and dynamic range of RPE for ROS detection, the production of ROS was initiated either chemically using increasing concentrations of potassium perchromate or photochemically using aluminum tetrasulphonated phthalocyanine. The generation of singlet oxygen was confirmed by phosphorescence at 1270 nm. The resulting photodegradation and decrease in fluorescence of RPE was found to correlate with increased perchromate or PDT treatment fluence, respectively. This effect was independent of pH (6.5-8) and could be inhibited using sodium azide. RPE was not susceptible to photobleaching with light alone (670 nm; 150 Jcm(-2)). ADS, which absorbs light between 600 and 750 nm, showed a direct correlation between radiant exposure (670 nm; 0-100 Jcm(-2)) and diminished fluorescence. Photobleaching was independent of irradiance (10-40 mW cm(-2)). We propose that actinometer microspheres may provide a means for obtaining high spatial resolution information regarding delivered PDT dose within model systems during investigational PDT development and dosimetric information for clinical extracorporeal PDT as in the case of ex vivo bone marrow purging.  相似文献   

7.
Photodynamic therapy (PDT) efficacy is a complex function of tissue sensitivity, photosensitizer (PS) uptake, tissue oxygen concentration, delivered light dose and some other parameters. To better understand the mechanisms and optimization of PDT treatment, we assessed two techniques for quantifying tissue PS concentration and two methods for quantifying pathological tumor damage. The two methods used to determine tissue PS concentration kinetic were in vivo fluorescence probe and ex vivo chemical extraction. Both methods show that the highest tumor to normal tissue PS uptake ratio appears 4 h after PS administration. Two different histopathologic techniques were used to quantify tumor and normal tissue damage. A planimetry assessment of regional tumor necrosis demonstrated a linear relationship with increasing light dose. However, in large murine tumors this finding was complicated by the presence of significant spontaneous necrosis. A second method (densitometry) assessed cell death by nuclear size and density. With some exceptions the densitometry method generally supported the planimetry results. Although the densitometry method is potentially more accurate, it has greater potential subjectivity. Finally, our research suggests that the tools or methods we are studying for quantifying PS levels and tissue damage are necessary for the understanding of PDT effect and therapeutic ratio in experimental in vivo tumor research.  相似文献   

8.
Abstract— Photosensitivity as observed after chlorpromazine (CPZ) treatment is enhanced in the UVA- rather than the UVB region, whereas CPZ has its absorption maximum at 305 nm. This long wavelength sensitivity has sometimes been ascribed to CPZ-sulfoxide (CPZSO) which has an absorption maximum at 340 nm. We compared the photobinding properties of CPZSO and CPZ under both in vitro and in vivo conditions.
With 310 and 370 nm lamps CPZSO absorbs twice as much light as CPZ but still binds less efficiently to HSA in vitro. At wavelengths longer than 380 nm CPZSO does not absorb nor photobind to HSA (420 nm lamps) in contrast to CPZ.
In vivo the bioavailability of CPZ and CPZSO in ears, eyes and skin of the back of Wistar rats is comparable, yet irradiation with 370 nm light caused more CPZ-photobinding in these tissues. Chlorpromazine binds relatively more compared to CPZSO, to constituents of deeper lying tissues (dermis). This corresponds with the observation that both the ratio of in vitro CPZ photobinding to CPZSO photobinding, and the penetrating ability of light in the skin increase with wavelength.
In the eyes, where the lens efficiently filters out light with wavelengths shorter than 370 nm, no CPZSO photobinding was observed, in contrast to CPZ; this also corresponds with the in vitro experiments. Therefore it seems more likely that the observed wavelength maximum in the photosensitivity action spectrum after CPZ treatment should be attributed to the non-sulfoxidated drug rather than to the sulfoxidated compound.  相似文献   

9.
In current clinical practice, photodynamic therapy (PDT) is carried out with prescribed drug doses and light doses as well as fixed drug-light intervals and illumination fluence rates. This approach can result in undesirable treatment outcomes of either overtreatment or undertreatment because of biological variations between different lesions and patients. In this study, we explore the possibility of improving PDT dosimetry by monitoring drug photobleaching and photoproduct formation. The study involved 60 mice receiving the same drug dose of a novel verteporfin-like photosensitizer, QLT0074, at 0.3 mg/kg body weight, followed by different light doses of 5, 10, 20, 30, 40 or 50 J/cm2 at 686 nm and a fluence rate of 70 mW/cm2. Photobleaching and photoproduct formation were measured simultaneously, using fluorescence spectroscopy. A ratio technique for data processing was introduced to reliably detect the photoproduct formed by PDT on mouse skin in vivo. The study showed that the QLT0074 photoproduct is stable and can be reliably quantified. Three new parameters, photoproduct score (PPS), photobleaching score (PBS) and percentage photobleaching score (PBS%), were introduced and tested together with the conventional dosimetry parameter, light dose, for performance on predicting PDT-induced outcome, skin necrosis. The statistical analysis of experimental results was performed with an ordinal logistic regression model. We demonstrated that both PPS and PBS improved the prediction of skin necrosis dramatically compared to light dose. PPS was identified as the best single parameter for predicting the PDT outcome.  相似文献   

10.
Abstract— Proton magnetic resonance imaging (MRI) and histological methods were used to evaluate photodynamic therapy (PDT)-induced hemorrhagic necrosis in the murine Ml tumor within 72 h of treatment of male DBA/2 mice. The effects of three photosensitizing drugs were investigated: Photofrin (n = 4), Zn (II) phthalocyanine (n = 7) and benzoporphyrin derivative monoacid ring A (n = 11). As noted in previous studies of PDT using MRI, MRI makes possible serial, noninvasive, in vivo observation of tissue response to PDT. Our serial study of MRI and histological data confirms that tumors responded in the same way to PDT treatment using the three photosensitizing drugs: vascular damage followed by hemorrhagic necrosis. Most importantly and unlike previous MRI studies of PDT, we used a very high field magnet that enhanced the effect of magnetic susceptibility on image signal when blood is processed by the body after PDT-induced hemorrhagic necrosis. This last finding demonstrates the utility of high field magnets and the importance of localized, serial experiments in future magnetic resonance studies of PDT.  相似文献   

11.
Photodynamic therapy (PDT) is a relatively new approach to the treatment of neoplasms which involves the use of photoactivatable compounds to selectively destroy tumors. 5-Aminolevulinic acid (ALA) is an endogenous substance which is converted to protoporphyrin IX (PpIX) in the synthetic pathway to heme. PpIX is a very effective photosensitizer. The goal of this study was to evaluate the effect of PDT using topical ALA on normal guinea pig (g.p.) skin and g.p. skin in which the stratum corneum was removed by being tape-stripped (TS). Evaluation consisted of gross examination, PpIX fluorescence detection, reflectance spectroscopy, and histology. There was no effect from the application of light or ALA alone. Normal non-TS g.p. skin treated with ALA and light was unaffected unless high light and ALA doses were used. Skin from which the stratum corneum was removed was highly sensitive to treatment with ALA and light: 24 h after treatment, the epidermis showed full thickness necrosis, followed by complete repair within 7 d. Time-dependent fluorescence excitation and emission spectra were determined to characterize the chromophore and to demonstrate a build-up of the porphyrin in the skin. These data support the view that PDT with topical ALA is a promising approach for the treatment of epidermal cutaneous disorders.  相似文献   

12.
Photodynamic therapy (PDT) is based on the light-induced activation of a photosensitizer generating highly reactive oxygen species that induce tissue destruction in malignant tissues. The present study was carried out to assess the photosensitizing potential of bis(3,5-diiodo-2,4,6-trihydroxyphenyl)squaraine in PDT trials in vivo. Male Swiss albino mice were divided into five groups. Skin tumor was induced using 7,12-dimethylbenz(a)anthracene - DMBA in the animals of Groups II, III, IV and V, while animals of Group I served as the control. At the completion of 20 weeks of induction, the tumor bearing mice from Group III, IV and V were given an intraperitoneal injection with the squaraine dye (12.5mg/kg body weight). After 24h, in the Group IV and V animals, the tumor area was exposed to visible light from a 1000W halogen lamp. The mice from groups I to IV were sacrificed two weeks after the PDT treatment and the marker enzymes (myeloperoxidase [MPO], beta-d-glucuronidase, rhodanese, lactate dehydrogenase [LDH], hexokinase, sialic acid and caspase) were assayed in tumor and normal tissues. Animals from Group V were sacrificed after 90 days of PDT treatment and the above parameters were recorded. Reduction in tumor volume and reversal of biochemical markers to near normal levels were observed in the treatment groups. The study assumes importance as it is the first report on PDT-a novel modality, using a squaraine dye for skin cancer therapy in vivo. The uniqueness of the mode of treatment lies in the selective uptake of squaraine dye by the cancer cells and their selective destruction using PDT without affecting the neighbouring normal cells, which is much advantageous over radiation therapy now frequently used. Also in skin cancer models, the progression/cure can be visualized by the naked eye which is another point of advantage, while seeking new modalities for the treatment of cancer.  相似文献   

13.
Irradiation of B16 pigmented melanoma subcutaneously transplanted in C57 mice with a single 650 mj pulse (10 ns) of 1064 nm light from a Q-switched Nd: YAG laser caused instantaneous bleaching of the pigmented tissue. Visual and histological examination of the resulting gray-colored tumor revealed the breakdown of melanosomes with no detectable alteration of the normal and tumor-overlying skin. Histological examination of the irradiated tumor showed some degree of vascular damage; the depth of the photodamage was not affected by the successive delivery of three consecutive light pulses. The bleached tumor grew at a modestly slower rate but the high-peak-power (HPP) laser treatment did not affect the tumor concentration of a photodynamic sensitizer Si(IV)-naphthalocyanine (isoBO-SiNc) intravenously injected 24 h before Nd : YAG irradiation. Treatment of the B16 pigmented melanoma by photodynamic therapy (PDT: 1 mg/kg isoBO-SiNc, 300 mW/cm2, 520 J/cm2) from a 774 nm diode laser immediately after the 1064 nm irradiation resulted in a 16 day delay of tumor regrowth, which was markedly longer than the delay (ca 6 days) obtained after PDT under identical conditions without the preirradia-tion. Thus, pretreatment of pigmented tumors with HPP 1064 nm light appears to enhance their susceptibility to conventional PDT. The tumor response was further enhanced by repeating the combined HPP/PDT treatment at an interval of 10 days (regrowth delay: 27 days), as well as by applying hyperthermia immediately after HPP/PDT (regrowth delay: ca 34 days).  相似文献   

14.
Strategies for enhanced photodynamic therapy effects   总被引:4,自引:0,他引:4  
Photodynamic therapy (PDT) is a treatment modality for the selective destruction of cancerous and nonneoplastic pathologies that involves the simultaneous presence of light, oxygen and a light-activatable chemical called a photosensitizer (PS) to achieve a cytotoxic effect. The photophysics and mechanisms of cell killing by PDT have been extensively studied in recent years, and PDT has received regulatory approval for the treatment of a number of diseases worldwide. As the application of this treatment modality expands with regard to both anatomical sites and disease stages, it will be important to develop strategies for enhancing PDT outcomes. This article focuses on two broad approaches for PDT enhancement: (1) mechanism-based combination treatments in which PDT and a second modality can be designed to either increase the susceptibility of tumor cells to PDT or nullify the treatment outcome-mitigating molecular responses triggered by PDT of tumors, and (2) the more recent approaches of PS targeting, either by specific cellular function-sensitive linkages or via conjugation to macromolecules.  相似文献   

15.
Photodynamic therapy (PDT) for actinic field cancerization is effective but painful. Pain mechanisms remain unclear but fluence rate has been shown to be a critical factor. Lower fluence rates also utilize available oxygen more efficiently. We investigated PDT effect in normal SKH1-HR mice using low and high fluence rate aminolevulinic acid (ALA) PDT and a fractionated illumination scheme. Six groups of six mice with different light treatment parameters were studied. Visual skin damage was assessed up to 7 days post-PDT. Fluorescence and reflectance spectroscopy during illuminations provided us with real-time information about protoporphyrin IX (PpIX) photobleaching. A novel dosing approach was introduced in that we used a photobleaching percentage instead of a preset fluence. Data show similar total and maximum damage scores in high and low fluence rate groups. Photobleaching of PpIX in the low fluence rate groups shows a trend toward more efficient photobleaching. Results indicate that low fluence rate PDT is as effective as and more efficient than high fluence rate PDT in normal mouse skin. Low fluence rate PDT light protocols need to be explored in human studies in search for an effective and well-tolerated treatment for actinic field cancerization.  相似文献   

16.
Dermatophytes are fungi that can be contagious and cause infections in the keratinized skin of mammals, including humans. The etiological diagnosis of dermatophytosis relies on a combination of in vitro‐culture and microscopic methods. Effective molecular tools could overcome the limitations of conventional methods of identification. In the present study, following phenetic identification as M. canis, M. fulvum, M. gypseum, T. mentagrophytes and T. terrestre, we genetically characterized key dermatophytes, employing the sequences of the first and second internal transcribed spacers of nuclear ribosomal DNA as well as part of the chitin synthase‐1 gene, and assessed the utility of these DNA regions (based on levels of nucleotide variation within and among species/taxa) as markers for the classification of species and genotypes. Employing partial chitin synthase‐1 gene as the marker, we also established a PCR‐coupled SSCP approach as a diagnostic/analytical mutation‐scanning tool. This tool should facilitate fundamental investigations of the ecology, epidemiology and population genetics of dermatophytes and, importantly, should assist in allowing a more rapid diagnosis of dermatophytoses in humans and other animals, thus overcoming the significant delays in targeted chemotherapy following diagnosis using conventional methods. (Nucleotide sequence data reported in this paper are available in the EMBL, GenBank and DDJB datadases under accession numbers FJ897707–FJ897713 (ITS‐1), FJ897714–FJ897720 (ITS‐2) and FJ897700–FJ897706 (pchs‐1)).  相似文献   

17.
Photodynamic therapy (PDT) is a new treatment modality that uses porphyrin derivatives and visible light, especially for the treatment of cancer. However, PDT with certain photosensitisers can cause prolonged skin photosensitization. This is particularly true for Photofrin II (Photofrin)-mediated PDT where patients are required to avoid direct exposure to sunlight for a period of 4-6 weeks. This is the only long-term adverse reaction to the drug. Recent studies have shown that topical copper treatment avoids this type of inflammatory reaction. In this study, we have tested the efficiency of the liposomal formulation of copper palmitate on porphyrin-photosensitized rats. Initially, adult male Sprague-Dawley rats were rendered photosensitive either by administration of Photofrin or aminolevulinic acid (ALA), a precursor of protoporphyrin IX (PpIX). Prior to this, their dorsal skin was shaved and treated topically with a cream consisting of either empty or copper palmitate-encapsulated liposomal formulation. After being kept in a dimmed light environment, the rats were exposed to visible light, and inflammatory responses were inspected. Histological studies revealed that no inflammatory cells were present at the skin sites treated with liposomal cream containing copper palmitate in the Photofrin-sensitized group while no reduction in the number of inflammatory cells was observed at the skin samples treated with the empty liposomes. In conclusion, the data demonstrate the significant protective effect of topically-applied liposome-encapsulated copper palmitate against both Photofrin and ALA-induced PpIX photosensitivity.  相似文献   

18.
Photodynamic therapy (PDT) of malignancies uses light to activate a photosensitizer preferentially accumulated in cancer cells. The first pegylated photosensitizer, tetrakis-(m-methoxypolyethylene glycol) derivative of 7,8-dihydro-5,10,15,20-tetrakis(3-hydroxyphenyl)-21-23-[H]-porphyrin (PEG-m-THPC), was evaluated in non-tumor-bearing rats. The aim of this study was to assess the photodynamic threshold for damage and its sequelae in normal rat tissue. Thirty-five Fischer rats were sensitized with 3, 9 or 30 mg/kg body weight PEG-m-THPC. Colon, vagina and perineum were irradiated with laser light of 652 nm wavelength and an optical dose of 50, 150 or 450 J/cm fiber length. Temperature in the pelvis was measured during PDT. Three days following PDT the effect on skin, vagina, colon, striated muscle, connective tissue, nerves and blood vessels was assessed by histology. The healing of the above-mentioned tissues was assessed on two rats 3 and 8 weeks after PDT using 9 mg/kg PEG-m-THPC activated with 450 J/cm laser light. No dark toxicity was observed. PDT using 30 mg/kg PEG-m-THPC induced severe necrosis irrespective of the optical dose. Body weight of 9 or 3 mg/kg activated with less than 450 J/cm induced moderate or no damage. No substantial increase in body temperature was seen during PDT. Tissues with severe PDT-induced damage seem to have a good tendency to regenerate. We conclude that within the dose required for tumor treatment PEG-m-THPC is a safe photosensitizer with promising properties. PDT of the colon mucosa below 9 mg/kg PEG-m-THPC and 150 J/cm seems to be safe. All other tissues can be exposed to 9 mg/kg PEG-m-THPC activated with less than 450 J/cm laser light with little side effects.  相似文献   

19.
Antimicrobial photodynamic treatment (PDT) is a promising method that can be used to control localized mycoses or kill fungi in the environment. A major objective of the current study was to compare the conidial photosensitization of two fungal species (Metarhizium anisopliae and Aspergillus nidulans) with methylene blue (MB) and toluidine blue (TBO) under different incubation and light conditions. Parameters examined were media, photosensitizer (PS) concentration and light source. PDT with MB and TBO resulted in an incomplete inactivation of the conidia of both fungal species. Conidial inactivation reached up to 99.7%, but none of the treatments was sufficient to achieve a 100% fungicidal effect using either MB or TBO. PDT delayed the germination of the surviving conidia. Washing the conidia to remove unbound PS before light exposure drastically reduced the photosensitization of A. nidulans. The reduction was much smaller in M. anisopliae conidia, indicating that the conidia of the two species interact differently with MB and TBO. Conidia of green and yellow M. anisopliae mutants were less affected by PDT than mutants with white and violet conidia. In contrast to what occurred in PBS, photosensitization of M. anisopliae and A. nidulans conidia was not observed when PDT was performed in potato dextrose media.  相似文献   

20.
Photodynamic therapy is taking importance as a nonintrusive treatment for nail onychomycosis. Knowledge of true transmittance values across nails could lead to qualitative and quantitative improvements in light-based treatments. We have characterized the spectral transmittance of healthy and fungally infected human fingernails and toenails according to nail thickness, and we propose a surface transmittance model for the small-scale optimization of light-based treatments. Transmittance of fingernails and toenails was analyzed by means of spectroradiometric measurements under solar-simulated visible light radiation (400 nm to 750 nm). The nail thickness was measured by means of microscope measurement. Transmittance was highest at longer wavelengths and decreased gradually as the wavelengths became shorter but with a significant nail transmittance of around 20% in the blue region of the spectrum. In the case of nails affected by onychomycosis, transmittance fell to under 10% because of the thickness of the nails, with no changes in spectral characteristics of transmitted light. Nail thickness is the main variable controlling exponentially light transmission in the visible spectrum and not only red radiation is effective for nail onychomycosis PDT. Blue light, the spectral band more effective for PPIX absorption is also effectively transmitted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号