首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in the ABC algorithm regarding its solution search equation, which is good at exploration but poor at exploitation. Inspired by differential evolution (DE), we propose a modified ABC algorithm (denoted as ABC/best), which is based on that each bee searches only around the best solution of the previous iteration in order to improve the exploitation. In addition, to enhance the global convergence, when producing the initial population and scout bees, both chaotic systems and opposition-based learning method are employed. Experiments are conducted on a set of 26 benchmark functions. The results demonstrate good performance of ABC/best in solving complex numerical optimization problems when compared with two ABC based algorithms.  相似文献   

2.
Artificial bee colony algorithm (ABC) is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in ABC regarding its solution search equation, which is good at exploration but poor at exploitation. To address this concerning issue, we propose an improved ABC (IABC) by using a modified search strategy to generate a new food source in order that the exploration and exploitation can be well balanced and satisfactory optimization performances can be achieved. In addition, to enhance the global convergence, when producing the initial population, both opposition-based learning method and chaotic maps are employed. In this paper, the proposed algorithm is applied to control and synchronization of discrete chaotic systems which can be formulated as both multimodal numerical optimization problems with high dimension. Numerical simulation and comparisons with some typical existing algorithms demonstrate the effectiveness and robustness of the proposed approach.  相似文献   

3.
Artificial Bee Colony (ABC) is a well known optimization approach to solve nonlinear and complex problems. It is relatively a simple and recent population based probabilistic approach for global optimization. Similar to other population based algorithms, ABC is also computationally expensive due to its slow nature of search process. The solution search equation of ABC is significantly influenced by a random quantity which helps in exploration at the cost of exploitation of the search space. In the solution search equation of ABC due to the large step size the chance of skipping the true solution is high. Therefore, in this paper, to balance the diversity and convergence capability of the ABC, Lévy Flight random walk based local search strategy is proposed and incorporated with ABC along with opposition based learning strategy. The proposed algorithm is named as Opposition Based Lévy Flight ABC. The experiments over 14 un-biased test problems of different complexities and five well known engineering optimization problems show that the proposed algorithm outperforms the basic ABC and its recent variants namely Gbest guided ABC, Best-So-Far ABC, and Modified ABC in most of the experiments.  相似文献   

4.
本文研究考虑交易成本的投资组合模型,分别以风险价值(VAR)和夏普比率(SR)作为投资组合的风险评价指标和效益评价指标。为有效求解此模型,本文在引力搜索和粒子群算法的基础上提出了一种混合优化算法(IN-GSA-PSO),将粒子群算法的群体最佳位置和个体最佳位置与引力搜索算法的加速度算子有机结合,使混合优化算法充分发挥单一算法的开采能力和探索能力。通过对算法相关参数的合理设置,算法能够达到全局搜索和局部搜索的平衡,快速收敛到模型的最优解。本文选取上证50股2014年下半年126个交易日的数据,运用Matlab软件进行仿真实验,实验结果显示,考虑交易成本的投资组合模型可使投资者得到更高的收益率。研究同时表明,基于PSO和GSA的混合算法在求解投资组合模型时比单一算法具有更好的性能,能够得到满意的优化结果。  相似文献   

5.
Heuristic optimization provides a robust and efficient approach for solving complex real-world problems. The aim of this paper is to introduce a hybrid approach combining two heuristic optimization techniques, particle swarm optimization (PSO) and genetic algorithms (GA). Our approach integrates the merits of both GA and PSO and it has two characteristic features. Firstly, the algorithm is initialized by a set of random particles which travel through the search space. During this travel an evolution of these particles is performed by integrating PSO and GA. Secondly, to restrict velocity of the particles and control it, we introduce a modified constriction factor. Finally, the results of various experimental studies using a suite of multimodal test functions taken from the literature have demonstrated the superiority of the proposed approach to finding the global optimal solution.  相似文献   

6.
本文针对求解旅行商问题的标准粒子群算法所存在的早熟和低效的问题,提出一种基于Greedy Heuristic的初始解与粒子群相结合的混合粒子群算法(SKHPSO)。该算法通过本文给出的类Kruskal算法作为Greedy Heuristic的具体实现手段,产生一个较优的初始可行解,作为粒子群中的一员,然后再用改进的混合粒子群算法进行启发式搜索。SKHPSO的局部搜索借鉴了Lin-Kernighan邻域搜索,而全局搜索结合了遗传算法中的交叉及置换操作。应用该算法对TSPLIB中的典型算例进行了算法测试分析,结果表明:SKHPSO可明显提高求解的质量和效率。  相似文献   

7.
Swarm intelligence is a research branch that models the population of interacting agents or swarms that are able to self-organize. An ant colony, a flock of birds or an immune system is a typical example of a swarm system. Bees’ swarming around their hive is another example of swarm intelligence. Artificial Bee Colony (ABC) Algorithm is an optimization algorithm based on the intelligent behaviour of honey bee swarm. In this work, ABC algorithm is used for optimizing multivariable functions and the results produced by ABC, Genetic Algorithm (GA), Particle Swarm Algorithm (PSO) and Particle Swarm Inspired Evolutionary Algorithm (PS-EA) have been compared. The results showed that ABC outperforms the other algorithms.  相似文献   

8.
In this paper we analyze the warm-standby M/M/R machine repair problem with multiple imperfect coverage which involving the service pressure condition. When an operating machine (or warm standby) fails, it may be immediately detected, located, and replaced with a coverage probability c by a standby if one is available. We use a recursive method to develop the steady-state analytic solutions which are used to calculate various system performance measures. The total expected profit function per unit time is derived to determine the joint optimal values at the maximum profit. We first utilize the direct search method to measure the various characteristics of the profit function followed by Quasi-Newton method to search the optimal solutions. Furthermore, the particle swarm optimization (PSO) algorithm is implemented to find the optimal combinations of parameters in the pursuit of maximum profit. Finally, a comparative analysis of the Quasi-Newton method with the PSO algorithm has demonstrated that the PSO algorithm provides a powerful tool to perform the optimization problem.  相似文献   

9.
热传导(对流-扩散)方程源项识别的粒子群优化算法   总被引:1,自引:0,他引:1  
提出了利用粒子群优化(PSO)算法反演热传导方程与对流-扩散方程源项的一种新方法,在已有文献方法的基础上,求解出这两类方程正问题的解析解,再把源项识别问题转化为最优化问题,结合粒子群优化算法寻优求解.通过数值模拟与统计检验,结果表明,此方法可快速有效地实现热传导方程与对流-扩散方程源项的识别,并可推广应用到其它数学物理方程的源项或参数的反演识别.  相似文献   

10.
This paper proposes the hybrid NM-PSO algorithm based on the Nelder–Mead (NM) simplex search method and particle swarm optimization (PSO) for unconstrained optimization. NM-PSO is very easy to implement in practice since it does not require gradient computation. The modification of both the Nelder–Mead simplex search method and particle swarm optimization intends to produce faster and more accurate convergence. The main purpose of the paper is to demonstrate how the standard particle swarm optimizers can be improved by incorporating a hybridization strategy. In a suite of 20 test function problems taken from the literature, computational results via a comprehensive experimental study, preceded by the investigation of parameter selection, show that the hybrid NM-PSO approach outperforms other three relevant search techniques (i.e., the original NM simplex search method, the original PSO and the guaranteed convergence particle swarm optimization (GCPSO)) in terms of solution quality and convergence rate. In a later part of the comparative experiment, the NM-PSO algorithm is compared to various most up-to-date cooperative PSO (CPSO) procedures appearing in the literature. The comparison report still largely favors the NM-PSO algorithm in the performance of accuracy, robustness and function evaluation. As evidenced by the overall assessment based on two kinds of computational experience, the new algorithm has demonstrated to be extremely effective and efficient at locating best-practice optimal solutions for unconstrained optimization.  相似文献   

11.
Chaotic catfish particle swarm optimization (C-CatfishPSO) is a novel optimization algorithm proposed in this paper. C-CatfishPSO introduces chaotic maps into catfish particle swarm optimization (CatfishPSO), which increase the search capability of CatfishPSO via the chaos approach. Simple CatfishPSO relies on the incorporation of catfish particles into particle swarm optimization (PSO). The introduced catfish particles improve the performance of PSO considerably. Unlike other ordinary particles, the catfish particles initialize a new search from extreme points of the search space when the gbest fitness value (global optimum at each iteration) has not changed for a certain number of consecutive iterations. This results in further opportunities of finding better solutions for the swarm by guiding the entire swarm to promising new regions of the search space and accelerating the search. The introduced chaotic maps strengthen the solution quality of PSO and CatfishPSO significantly. The resulting improved PSO and CatfishPSO are called chaotic PSO (C-PSO) and chaotic CatfishPSO (C-CatfishPSO), respectively. PSO, C-PSO, CatfishPSO, C-CatfishPSO, as well as other advanced PSO procedures from the literature were extensively compared on several benchmark test functions. Statistical analysis of the experimental results indicate that the performance of C-CatfishPSO is better than the performance of PSO, C-PSO, CatfishPSO and that C-CatfishPSO is also superior to advanced PSO methods from the literature.  相似文献   

12.
针对柔性作业车间调度问题,提出一种新型两阶段动态混合群智能优化算法.算法初始阶段采用动态邻域的协同粒子群进行粗搜索,第二阶段提出了基于混沌算子的蜂群进行细搜索,既增强了种群多样性,又提高了算法搜索精度,实现了全局搜索与局部搜索能力的有效平衡.针对柔性作业车间调度问题特点,采用独特的编码方式和位置更新策略来避免不合法解的产生.最后将此算法在不同规模的实例上进行了仿真测试,并与最近提出的其他几种具有代表性的算法进行了比较,验证了算法的有效性和优越性.  相似文献   

13.
宋健  邓雪 《运筹与管理》2018,27(9):148-155
针对模糊不确定的证券市场,用可能性均值、下可能性方差和协方差分别替换了投资组合模型中概率均值、方差和协方差,构建了双目标均值-方差投资组合模型。然后采用线性加权法将双目标模型转化为单目标模型,进而提出了一个PSO-AFSA混合算法对其求解。该混合算法中,将粒子群算法搜索的结果作为人工鱼群算法初始鱼群,进一步搜索,这样能有效的避免粒子群算法陷入局部最优。同时,将人工鱼群中的最好位置反馈到粒子群算法的速度更新公式中,指引粒子运动,加快算法收敛。最后,进行实例分析,结果表明:PSO-AFSA混合算法是有效的,混合算法搜索到的全局最优值好于基本粒子群算法搜索到的全局最优值。  相似文献   

14.
Metaheuristic optimization algorithms have become popular choice for solving complex and intricate problems which are otherwise difficult to solve by traditional methods. In the present study an attempt is made to review the hybrid optimization techniques in which one main algorithm is a well known metaheuristic; particle swarm optimization or PSO. Hybridization is a method of combining two (or more) techniques in a judicious manner such that the resulting algorithm contains the positive features of both (or all) the algorithms. Depending on the algorithm/s used we made three classifications as (i) Hybridization of PSO and genetic algorithms (ii) Hybridization of PSO with differential evolution and (iii) Hybridization of PSO with other techniques. Where, other techniques include various local and global search methods. Besides giving the review we also show a comparison of three hybrid PSO algorithms; hybrid differential evolution particle swarm optimization (DE-PSO), adaptive mutation particle swarm optimization (AMPSO) and hybrid genetic algorithm particle swarm optimization (GA-PSO) on a test suite of nine conventional benchmark problems.  相似文献   

15.
This work presents the evolutionary quantum-inspired space search algorithm (QSSA) for solving numerical optimization problems. In the proposed algorithm, the feasible solution space is decomposed into regions in terms of quantum representation. As the search progresses from one generation to the next, the quantum bits evolve gradually to increase the probability of selecting the regions that render good fitness values. Through the inherent probabilistic mechanism, the QSSA initially behaves as a global search algorithm and gradually evolves into a local search algorithm, yielding a good balance between exploration and exploitation. To prevent a premature convergence and to speed up the overall search speed, an overlapping strategy is also proposed. The QSSA is applied to a series of numerical optimization problems. The experiments show that the results obtained by the QSSA are quite competitive compared to those obtained using state-of-the-art IPOP-CMA-ES and QEA.  相似文献   

16.
A multilevel image thresholding using the honey bee mating optimization   总被引:1,自引:0,他引:1  
Image thresholding is an important technique for image processing and pattern recognition. Many thresholding techniques have been proposed in the literature. Among them, the maximum entropy thresholding (MET) has been widely applied. In this paper, a new multilevel MET algorithm based on the technology of the honey bee mating optimization (HBMO) is proposed. This proposed method is called the maximum entropy based honey bee mating optimization thresholding (MEHBMOT) method. Three different methods such as the particle swarm optimization (PSO), the hybrid cooperative-comprehensive learning based PSO algorithm (HCOCLPSO) and the Fast Otsu’s method are also implemented for comparison with the results of the proposed method. The experimental results manifest that the proposed MEHBMOT algorithm can search for multiple thresholds which are very close to the optimal ones examined by the exhaustive search method. In comparison with the other three thresholding methods, the segmentation results using the MEHBMOT algorithm is the best and its computation time is relatively low. Furthermore, the convergence of the MEHBMOT algorithm can rapidly achieve and the results validate that the proposed MEHBMOT algorithm is efficient.  相似文献   

17.
Particle swarm optimization (PSO) is originally developed as an unconstrained optimization technique, therefore lacks an explicit mechanism for handling constraints. When solving constrained optimization problems (COPs) with PSO, the existing research mainly focuses on how to handle constraints, and the impact of constraints on the inherent search mechanism of PSO has been scarcely explored. Motivated by this fact, in this paper we mainly investigate how to utilize the impact of constraints (or the knowledge about the feasible region) to improve the optimization ability of the particles. Based on these investigations, we present a modified PSO, called self-adaptive velocity particle swarm optimization (SAVPSO), for solving COPs. To handle constraints, in SAVPSO we adopt our recently proposed dynamic-objective constraint-handling method (DOCHM), which is essentially a constituent part of the inherent search mechanism of the integrated SAVPSO, i.e., DOCHM + SAVPSO. The performance of the integrated SAVPSO is tested on a well-known benchmark suite and the experimental results show that appropriately utilizing the knowledge about the feasible region can substantially improve the performance of the underlying algorithm in solving COPs.  相似文献   

18.
A novel hybrid approach involving particle swarm optimization (PSO) and bacterial foraging optimization algorithm (BFOA) called bacterial swarm optimization (BSO) is illustrated for designing static var compensator (SVC) in a multimachine power system. In BSO, the search directions of tumble behavior for each bacterium are oriented by the individual's best location and the global best location of PSO. The proposed hybrid algorithm has been extensively compared with the original BFOA algorithm and the PSO algorithm. Simulation results have shown the validity of the proposed BSO in tuning SVC compared with BFOA and PSO. Moreover, the results are presented to demonstrate the effectiveness of the proposed controller to improve the power system stability over a wide range of loading conditions. © 2014 Wiley Periodicals, Inc. Complexity 21: 245–255, 2015  相似文献   

19.
This paper introduces a new hybrid algorithmic nature inspired approach based on particle swarm optimization, for solving successfully one of the most popular logistics management problems, the location routing problem (LRP). The proposed algorithm for the solution of the location routing problem, the hybrid particle swarm optimization (HybPSO-LRP), combines a particle swarm optimization (PSO) algorithm, the multiple phase neighborhood search – greedy randomized adaptive search procedure (MPNS-GRASP) algorithm, the expanding neighborhood search (ENS) strategy and a path relinking (PR) strategy. The algorithm is tested on a set of benchmark instances. The results of the algorithm are very satisfactory for these instances and for six of them a new best solution has been found.   相似文献   

20.
We propose a novel cooperative swarm intelligence algorithm to solve multi-objective discrete optimization problems (MODP). Our algorithm combines a firefly algorithm (FA) and a particle swarm optimization (PSO). Basically, we address three main points: the effect of FA and PSO cooperation on the exploration of the search space, the discretization of the two algorithms using a transfer function, and finally, the use of the epsilon dominance relation to manage the size of the external archive and to guarantee the convergence and the diversity of Pareto optimal solutions.We compared the results of our algorithm with the results of five well-known meta-heuristics on nine multi-objective knapsack problem benchmarks. The experiments show clearly the ability of our algorithm to provide a better spread of solutions with a better convergence behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号