首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For ballistically impacted glass/epoxy cross-ply laminated plates with three five-layer unidirectional laminas, high-speed photos were taken from the back of plates, illuminated from the front side. The semitransparency of the plates enabled a Nova high-speed camera to record delamination-crack propagations at speeds of up to 40,000 frames/s. The delamination crack in the fiber direction of the first (second) lamina at the first (second) interface, propagated initially at 300–400 (400–500) m/s which decreased to 200–300 (270–400) m/s during the period of observation, and decelerated to a stop within 100 (300) μs. This last velocity range (270–400 m/s) agreed well with the largest-amplitude flexural-wave velocity measured by strain gages. This is a documentation that delamination is associated with the flexural wave. A velocity gage consisting of a silver conductive paint was modified to measure propagation velocities of the generator strip which was cut from the first lamina by two through-the-thickness cracks and which initiated a sequential delamination. This generator-strip-formation velocity was higher than the measured delamination-crack-propagation velocity. This fact is consistent with the assumption that the generator strip initiates delamination cracks.  相似文献   

2.
Various approaches have been used for model1ing problems dealing with interaction of acoustic/elastic waves with transversely isotropic cylinders. The authors developed the first mathematical model for the scattering of acoustic waves from transversely isotropic cylinders [Honarvar, F., Sinclair, A.N., 1996. Acoustic wave scattering from transversely isotropic cylinders. Journal of the Acoustical Society of America 100, 57–63.]. In the current paper, this model is used for derivation of the frequency equations of longitudinal and flexural wave propagation in free transversely isotropic cylinders. Consistency of this model with the physics of the problem is demonstrated and a systematic solution to the corresponding equations is developed. Numerical results obtained for a number of transversely isotopic cylinders are used for verification of the mathematical model.  相似文献   

3.
Wave propagation in porous piezoelectric material (PPM), having crystal symmetry 6 mm, is studied analytically. Christoffel equation is derived for the propagation of plane harmonic waves in such a medium. The roots of this equation give four complex wave velocities which can propagate in such materials. The phase velocities of propagation and the attenuation quality factors of all these waves are described in terms of complex wave velocities. Phase velocities and attenuation of the waves in PPM depend on the phase direction. Numerical results are computed for the PPM BaTiO3. The variation of phase velocity and attenuation quality factor with phase direction, porosity and the wave frequency is studied. The effects of anisotropy and piezoelectric coupling are also studied. The phase velocities of two quasi dilatational waves and one quasi shear waves get affected due to piezoelectric coupling while that of type 2 quasi shear wave remain unaffected. The phase velocities of all the four waves show non-dispersive behavior after certain critical high frequency. The phase velocity of all waves decreases with porosity while attenuation of respective waves increases with porosity of the medium. The characteristic curves, including slowness curves, velocity curves, and the attenuation curves, are also studied in this paper.  相似文献   

4.
5.
6.
The boundary conditions at free surface of an incompressible, transversely isotropic elastic half-space are satisfied to obtain the reflection coefficients for the case when outer slowness section is re-entrant. Two quasi-shear waves will be reflected for an angular range of direction of incident wave. The numerical illustrations of reflection coefficients are presented graphically for three arbitrary materials.  相似文献   

7.
A generalization of the simpler microstructure theory developed earlier for elastic laminates by Sun, Achenbach and Herrmann is used to analyze steady state plane wave propagation. This new version incorporates higher-order thickness variations in the displacement functions and includes restrictions on both displacement and stress at the laminate interfaces.To assess the potential of a second-order microstructure theory for accurate modeling of mechanical processes in laminates, dispersion results and especially mode shape data for both displacements and stresses are obtained and compared to corresponding solutions obtained by the theory of elasticity. The comparisons indicate that while dispersion results may be nearly identical, extremely significant differences may be observed in the mode shapes.  相似文献   

8.
The wave propagation in an infinite, transversely isotropic solid cylinder of arbitrary cross-section immersed in fluid is studied using the Fourier expansion collocation method, within the framework of the linearized, three-dimensional theory of elasticity. The equations of motion of solid and fluid are respectively formulated using the constitutive equations of a transversely isotropic cylinder and the constitutive equation of an inviscid fluid. Three displacement potential functions are introduced to uncouple the equations of motion along the radial, circumferential and axial directions. The frequency equations of longitudinal and flexural (symmetric and antisymmetric) modes are analyzed numerically for an elliptic and cardioidal cross-sectional transversely isotropic solid cylinder of arbitrary cross-section immersed in fluid. The computed non-dimensional wavenumbers are presented in the form of dispersion curves for the material zinc. The general theory can be used to study any kind of cylinder with proper geometric relations.  相似文献   

9.
The propagation of plane waves in a fibre-reinforced, anisotropic, generalized thermoelastic media is discussed. The governing equations in xy plane are solved to obtain a cubic equation in phase velocity. Three coupled waves, namely quasi-P, quasi-SV and quasi-thermal waves are shown to exist. The propagation of Rayleigh waves in stress free thermally insulated and transversely isotropic fibre-reinforced thermoelastic solid half-space is also investigated. The frequency equation is obtained for these waves. The velocities of the plane waves are shown graphically with the angle of propagation. The numerical results are also compared to those without thermal disturbances and anisotropy parameters.  相似文献   

10.
The analytical solutions for body-wave velocity in a continuously inhomogeneous transversely isotropic material, in which Young’s moduli (E, E′), shear modulus (G′), and material density (ρ) change according to the generalized power law model, (a+b z) c , are set down. The remaining elastic constants of transversely isotropic media, ν, and ν′ are assumed to be constants throughout the depth. The planes of transversely isotropy are selected to be parallel to the horizontal surface. The generalized Hooke’s law, strain-displacement relationships, and equilibrium equations are integrated to constitute the governing equations. In these equations, utilizing the displacement components as fundamental variables, the solutions of three quasi-wave velocities (V SV , V P ,?V SH ) are generated for the present inhomogeneous transversely isotropic materials. The proposed solutions are compared with those of Daley and Hron (Bull Seismol Soc Am 67:661–675, (1977)), and Levin (Geophysics 44:918–936, (1979)) when the inhomogeneity parameter c?=?0. The agreement between the present results and previously published ones is excellent. In addition, the parametric study results reveal that the magnitudes of wave velocity are remarkably affected by (1) the inhomogeneity parameters (a, b, c); (2) the type and degree of material anisotropy (E/E′, ν/ν′, G/G′); (3) the phase angle (θ); and (4) the depth of the medium (z). Consequently, it is imperative to consider the effects of inhomogeneity when investigating wave propagation in transversely isotropic media.  相似文献   

11.
12.
A powerful complex transfer matrix approach to wave propagation perpendicular to the layering of a composite of periodic and disordered structure is worked out showing propagating and stopping bands of time-harmonic waves and the singular cases of standing waves. A state ratio of left- and right-going plane waves is defined and interpreted geometrically in the complex plane in terms of fixed points and flow lines. For numerical considerations and extension of the approach to higher dimensional problems a continued fraction expansion of the state ratio mapping is presented. Impurity modes of wave propagation in composites with widely spaced impurity cells of different elastic materials are discussed. Stopping bands in the frequency spectrum of global waves in fully disordered composites are found to exist in the range of frequencies corresponding to common gaps in the spectrum of cnstituent regular periodic composites which are constructed from the cells of the disordered system. For those frequencies, waves propagate only a (short) finite distance and are therefore strongly localized modes in a composite of fairly large extent.  相似文献   

13.
14.
A new procedure for the optimum layup design of composite laminates is described in this paper. In this method the global optimum search and local relaxing constraints are adequately combined together. The design variables are divided and applied in separate processes. A 16-node hybrid semi-Loof element model is used in the global structure analysis. The iterative complex method is adopted in the optimization. The method is suitable for the minimum weight design of a laminate subjected to the strength and stiffness constraints under multiple loading. The numerical results demonstrate the high efficiency and reliability of the present method.The project was supported by National Natural Science Foundation of China  相似文献   

15.
Summary In this paper, the method of numerical integration along bicharacteristics is generalized to the case of layered transversely isotropic medium for analysing the axisymmetric stress wave propagation. The stability of the present scheme is studied. The advantages and limitations of the method are discussed. Received 12 June 1996; accepted for publication 6 May 1997  相似文献   

16.
Summary By use of the separation of variables method and the Laplace transformation, the two-dimensional transient torsional wave propagation problem in a transversely isotropic tube is studied when a torque is suddenly applied to its end surface. The results show that, for the discontinuous distribution of the impact shear stress, the region of the 2D stress distribution in a transversely isotropic tube becomes large with the increase of the anisotropy of the material. Received 13 June 1997; accepted for publication 17 June 1998  相似文献   

17.
A wave-based method is developed to quantify the defect due to porosity and also to locate the porous regions, in a composite beam-type structure. Wave propagation problem for a porous laminated composite beam is modeled using spectral finite element method (SFEM), based on the modified rule of mixture approach, which is used to include the effect of porosity on the stiffness and density of the composite beam structure. The material properties are obtained from the modified rule of mixture model, which are used in a conventional SFEM to develop a new model for solving wave propagation problems in porous laminated composite beam. The influence of the porosity content on the group speed and also the effect of variation in theses parameters on the time responses are studied first, in the forward problem. The change in the time responses with the change in the porosity of the structure is used as a parameter to find the porosity content in a composite beam. The actual measured response from a structure and the numerically obtained time responses are used for the estimation of porosity, by solving a nonlinear optimization problem. The effect of the length of the porous region (in the propagation direction), on the time responses, is studied. The damage force indicator technique is used to locate the porous region in a beam and also to find its length, using the measured wave propagation responses.  相似文献   

18.
The problem of wave propagation in shells within the framework of a simplified linear shell theory is treated using the method of Hadamard. Speeds of propagation, wave shape and decay, as well as coupling effects, are obtained for longitudinal, transverse and bending waves. The theory is applied to wave propagation on a spherical shell.
Résumé On traite la problème de la propagation des ondes dans les voiles minces en utilisant la méthode de Hadamard. Les vitesses de la propagation, la forme de l'onde, et aussi les effets d'accouplement sont obtenus pour les onides longitudinales, transversales et fléchissantes. On applique cette théorie à la propagation des ondes dans une coque sphérique.


This work was supported in part by funds from the National Research Council of Canada, under Grant Number A 3805.  相似文献   

19.
The problem of wave propagation in linear elastic membranes is treated using the method of Hadamard. Speeds of propagation, wave shape and decay, as well as coupling effects, are obtained for longitudinal and transverse waves. Examples are considered which illustrate the features of the theory.
Résumé On traite la problème de la propagation des ondes dans une membrane lineare et elastique, utilisant la mèthode de Hadamard. Les vitesses de la propagation, la forme del'onde, et les effets d'accouplement sont obtenus en cas des ondes longitudinales et transversales. Les exemples sont presentés qui demontrent les points essentiales de la theorie.


This work was supported in part by funds from the National Research Council of Canada, under grant number A3805.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号