首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Mass-selected antimony cluster ions Sb n + (n = 3-12) and bismuth cluster ions Bi {ntn} + (n = 3-8) are allowed to collide with the surface of highly oriented pyrolytic graphite at energies up to 350 eV. The resulting fragment ions are analysed in a time-of-flight mass spectrometer. Two main fragmentation channels can be identified. At low impact energies both Sb n + and Bi n + cluster ions lose neutral tetramer and dimer units upon collision. Above about 150 eV impact energy Sb 3 + becomes the predominant fragment ion of all investigated antimony clusters. The enhanced stability of these fragment clusters can be explained in the framework of the polyhedral skeletal electron pair theory. In contrast, Bi n + cluster scattering leads to the formation of Bi 3 + , Bi 2 + and Bi+ with nearly equal abundances, if the collision energy exceeds 75 eV. The integral scattering yield is substantially higher in this case as compared to Sb n + clusters.  相似文献   

2.
In this work, the reactions of ?OH, e aq ? , and SO 4 ?? with diethyl phthalate (DEP) were investigated in aqueous solution by pulse radiolysis, and degradation efficiencies of DEP with ?OH and e aq ? were evaluated in water using steady-state radiolysis as well. The absolute rate constants of ?OH, e aq ? , and SO 4 ?? with DEP were determined as 2.3 × 109, 1.0 × 1010, and 1.0 × 108 M?1 s?1, respectively. The degradation efficiencies for the ?OH and e aq ? reactions were 81 and 33 %, respectively. Transient absorption spectra were observed for the intermediate radicals produced by ?OH, e aq ? , and SO 4 ?? reactions. The results suggested that e aq ? transferred to the ester group, resulting in the formation of DEP radical anions. In contrast, ?OH and SO 4 ?? added predominantly to the aromatic ring of DEP, forming the corresponding ?OH adducts. The fundamental mechanistic parameters and degradation efficiencies derived from these results were significant for evaluations and applications of advanced oxidation processes.  相似文献   

3.
Stoichiometric and non-stoichiometric, positive and negative oxygen cluster ions (n up to 70) have been produced in a crossed neutral beam/electron beam ion source. The abundance and stability of the ions formed have been analyzed with a double focussing sector field mass spectrometer in a series of experiments. Positive and negative ion mass spectra observed exhibit distinct abundance anomalies, however, at different cluster sizes. Abundance maxima and minima correlate with correspondingly small and large metastable fractions of (O2) n + and (O2) n ? ions, respectively. (O2) n + ions may also lose up top=(n?1) monomers by collision induced dissociation with monotonously decreasing probability with increasingp. Metastable fractions determined for (O2) n ? ions produced with appr. zero eV electrons are in general larger than those for ions produced with appr. 7 eV electrons. (O2) n ? ions are also observed to decay via autodetachment, with lifetimes increasing with increasing cluster size. Finally, here we were able to prove that an apparent loss of the monomer fragment O (and higher homologues) observed in the metastable time regime is due to ordinary metastable monomer evaporation in the acceleration region. Moreover, we will also present here some new data and interpretation concerning the electron attachment cross section function for O2 clusters.  相似文献   

4.
Mass-selected projectile ions in the tens of electronvolt energy range undergo surface-induced dissociation upon collision with a liquid perfluorinated polyether (PFPE) surface. The efficiency of translational-to-vibrational (T-V) energy transfer is similar to that observed for a fluorinated self-assembled monolayer (SAM) surface. The thermometer ion W(CO)^’ was used to detenrrine an average T-V conversion efficiency of 18% in the collision energy range of 30–50 eV. The surface can be bombarded for several hours without displaying any change in the scattered ion products. Ion-surface reactions occur with some projectiles and are analogous to those seen with the fluorinated SAM surface. For example, WF ? + (m=1–5) and W(CO)nF ? + (n=1–2, m=1–2) are generated upon collisions of W(CO) 6 + with the PFPE liquid surface. The ion-surface reactions observed suggest that F atoms and/or CF3 groups are accessible for reaction while the oxygen atoms lie below the outermost surface layer. Chemical sputtering of the liquid surface also occurs and yields common fluorocarbon fragment ions, including CF 3 + , C2F 5 + , and C3F 7 + and the oxygenated product CFO+. The liquid surface is remarkably free of hydrocarbon impurities. Collisions of the pyrazine and benzene molecular ions, both probes for hydrocarbon impurities, resulted in very little protonated pyrazine or protonated benzene.  相似文献   

5.
The positive, liquid secondary ion (LSI) mass spectra of six cobalt(III) and three chromium(III) (β-diketonates ligand = L?) were examined in a 3-nitrobenzyl alcohol matrix. The complexes of both metals yield clean, matrix-free mass spectra, but there are important differences between them. The cobalt compounds show prominent peaks assignable to the molecular ion, CoL 3 + , of the monomeric chelates, together with abundant dimeric ions, such as Co2L 4 + and Co2L 3 + ; in contrast, chromium complexes show protonated monomers, CrL3H+, in addition to ionized monomers, CrL 3 + , and only minor formation of dimeric ions. The collisionally-activated dissociation (CAD) mass spectrum of Co2L 4 + shows fragmentation to CoL 2 + and Co2L 3 + . That of Co2L 3 + shows fragmentation only to dimeric ions, including Co2L 2 + and, for thienyl or phenyl substituted ligands, to Co2L2Ar+ or Co2LAr+ (Ar = thienyl or phenyl). Neither Co2L 4 + nor Co2L 3 + dissociates to the CoL 3 + ion. The LSI mass spectrum of a mixture of two different cobalt chelates shows dimeric ions containing both types of ligand, which can be explained by ion-molecule reactions in the selvedge region. The differing behaviors of the cobalt and chromium complexes is attributed to the relatively greater stability of the +2 oxidation state for cobalt than for chromium.  相似文献   

6.
Cross sections for the production of O 2 ? in charge transfer collisions of fast molecular hydrogen ions (H 2 + , D 2 + , H 3 + , and D 3 + of 10 to 140 keV kinetic energy) with O2 molecules have been determined by means of a time-of-flight mass spectrometer analysing the slow negative product ions from the collisions. Within the measuring accuracy equivelocity H 2 + and D 2 + ions have the same cross sections for the generation of O 2 ? . The projectile velocity dependence curve of the cross section passes through a broad maximum with a peak value of about 6.5×10?18 cm2 around the Bohr velocity (25 keV/u) before showing an asymptotic decrease still within the limited energy range under investigation that is in inverse proportion to the square of velocity. Throughout the examined energy range H 3 + ions yield a cross section which is about 1.4 times larger than that of H 2 + ions of the same velocity. The fragment ion O? has been found to appear with cross sections between 10?19 and 10?18 cm2 upon collisional excitation in the energy range under investigation, with ever decreasing intensity when the energy of the positive hydrogen ions, the proton included, was increased.  相似文献   

7.
Photodissociation spectra of the molecular ion CH3I+ were obtained with a three stage quadrupole mass spectrometer. Starting from the \(\tilde X^2 E_{3/2} \) ground state, theà 2 E 1/2 state was excited with a stilbene 3 cw dye laser. This state predissociates to CH + 3 +I. Measuring the intensity of the CH + 3 fragment ions as a function of the wavelength of the exciting laser, a spectrum showing vibrational and rotational structure was obtained. The vibrational structure was assigned to three progressions ofv 3 and new vibrational frequencies were determined. From a computer simulation of the (0, 1, 10) band rotational constants were derived. In particular, their dependence on the vibrationv 3 was studied.  相似文献   

8.
Metastable ion (MI) and collision-induced dissociation (CID) mass spectra have been recorded and compared for all nine C4H12Si+. isomers. The (Me)4Si+., t-BuSiH 3 +. , s-BuSiH 3 + , and (Me)2EtSiH+. isomers have unique MI and CID mass spectra. The MI mass spectra, including the kinetic energy release values, of (Me)(i-Pr)SiH 2 +. and (Me)(n-Pr)SiH 2 +. are identical, which implies isomerization. MI data also suggest that a fraction of the n-BuSiH 3 +. ions rearrange into branched (Me)2EtSiH+. ions and a fraction of the n-BuSiH 3 +. ions rearrange into branched s-BuSiH 3 +. ions. A comparison with the isomeric C5H 12 +. pentanes reveals a crucial difference: H2 loss occurs for n-BuSiH 3 +. , i-BuSiH 3 +. , s-BuSiH 3 +. , (Me)(n-Pr)SiH 2 +. , (Me)(i-Pr)SiH 2 +. , and Et2SiH 2 +. , but not for any of the C5Hi 12 +. isomers. Generation of four- or five-membered silicon containing rings is suggested for H2 loss from the C4H12Si+. silanes.  相似文献   

9.
Both positive and negative phosphorus cluster ions were generated from the laser ablation of a red phosphorus sample. The mass distribution of phosphorus cluster ions was found to be very sensitive to the power density of the ablation laser. The P 7 + species exhibits the highest signal intensity in the recorded mass spectra of bare phosphorus cluster cations, as does P 5 - among the anions. Their special structural stability can be attributed to their planar configuration and their aromatic character. As the phosphorus cluster size increases, the odd/even alternation of the signal intensity becomes more pronounced. For the P n + species with n > 24, the relative abundance varies in the order of 8 and P n + with n = 8k + 1 (k = 3–11) are more intense than their neighbors. For comparison, some binary phosphide cluster ions, including CnP m - , SinP m - , BnP m + and AlnP m + , were produced as well. The mass distribution of binary phosphide cluster ions changes with different components. From analysis of the recorded mass spectra of the phosphide cluster ions, the larger clusters may be in a polyhedral configuration and tend to have all valence electrons paired.  相似文献   

10.
Some recent results about Ge p C n + ions (p=1, 2;n < 6) produced in laser microprobe mass analyser experiments (LAMMA) show very marked alternations in the emission intensities I(Ge p C n + ) as a function of then andp parities. I(Ge p C n + ) are maxima for evenn. Thus, intensity maxima occur when the total atom numberm of the aggregates is odd for GeC n + (m=n+1) and even for Ge2C n + (m=n+2). As a result, GeC n + ions seem to behave as C m + ions, whereas the behaviour of Ge2C n + ions is quite similar to that of Ge p + ions formed in SIMS or vaporization experiments on pure germanium. It is well known (correspondence rule) that the parity effect in the emissions corresponds to alternations in the ion stabilities. These results are analysed from a model built in Hückel approximation with hybridization. Forp=1, the clusters are assumed to be insp hybridization as for C m + ions, hence with linear shapes, and forp=2, they would rather be insp 2 orsp 3 hybridization as for Ge p + ions. Relative stabilities and distributions of the energy levels of the aggregates are then calculated. The relative stabilities given for Ge p C n + by this model show maxima for evenn as in experiments, and we have thus a good agreement between our calculation results and the experimental data. Moreover, we found that Ge2C n + would rather be insp 3 hybridization, that is under three dimensional shapes.  相似文献   

11.
Negatively charged cluster ions of hydrogen chloride are formed by electron attachment to HCl clusters, which are produced in a seeded supersonic beam traversing a sustained gas discharge. Cluster ions of (HCl) n ? , withn=2, and tentatively withn=3 and 4 are observed. Cluster ions like Cl n ? , Cl n ? (HCl) m , and withAr attached to them are also seen. The relevance to radiation chemistry of HCl if briefly discussed. Atoms evaporating from the hot, thoriated tungsten filament of the glow discharge lead to clusters such as Th n ? and its oxides.  相似文献   

12.
Rare gas ions Ne+, Ar+ and Kr+ are injected into a drift tube which is filled with helium gas and cooled by liquid helium. Helium cluster ions RgHe x + (Rg=Ne, Ar and Kr,x≦14) are observed as products. Information regarding the stability of RgHe x + is obtained from drift field dependence of the size distribution of the clusters, and magic numbers are determined. The magic numbers arex=11 and 13 for NeHe x + andx=12 for ArHe x + and KrHe x + . NeHe x + , Ar+ and Kr+ are proposed as the core ions for NeHe 13 + , ArHe 12 + and KrHe 12 + , respectively.  相似文献   

13.
Vapor pressures for the system I (dimethyl sulfoxide/H2O=DMSO/H2O) and isotopic differential pressures I-II (II=DMSO/D2O) have been measured between 25 and 70°C at DMSO concentrations of 0.05, 0.15, 0.30, 0.45, 0.60, 0.70, 0.80, 0.87, and 0.92 mole fraction. A high-precision differential method was used. The total pressures over the solutions, I, have been fitted to a relation derived from the Duhem-Margules equation, P T =P 1 o X1γ1+P 2 o X2γ2, with γ1=exp[∑kαkX 2 k ] and $$\gamma _2 = exp[\sum \alpha _k X_2^k - \sum (\alpha _k /(k - 1))(kX_2^{k - 1} - 1)].$$ . The αk are parameters andk is a number ≥2. The αk were taken as temperature dependent. Four parameters sufficed to fit the data within experimental error. Excess partial molal properties derived from the fits are in quantitative agreement with earlier literature results derived from the directly measured partial pressures, but the present data extend over a wider temperature range. The isotopic differential pressures I-II were similarly fitted to the relation above. The excess free energies and enthalpiesG I E andH I E are large and negative. The isotope effects ΔG I,II E =G I E ?G II E and ΔH I,II E are negative. They are discussed in detail in terms of the theory of isotope effects in condensed phases and demonstrated to be consistent with that theory and with the available spectroscopic data. A small amount of enthalpy data for the solution of DMSO in HOH and DOD is reported.  相似文献   

14.
The solubility of carefully characterized magnetite, Fe3O4, in dilute aqueous solutions saturated with H2 has been measured at temperatures from 100 to 300°C in a flow apparatus. Solution compositions included either HCl or NaOH molalities of up to 1 and 40 mmole-kg?1, respectively, and H2 molalities of 0.0779, 0.779, and 8.57 mmole-kg?1. The dependence of the equilibrium solubility on the pH and reduction potential were fitted to a scheme of soluble ferrous and ferric species consisting of Fe2+, FeOH+, Fe(OH)2, Fe(OH) 3 ? , Fe(OH)3, and Fe(OH) 4 ? . Solubility products from the fit, corresponding to the reactions $$\tfrac{1}{3}Fe_3 O_4 + (2 - b)H^ + + \tfrac{1}{3}H_2 \rightleftharpoons Fe(OH)_b^{2 - b} + (4/3 - b)H_2 O$$ and $$\tfrac{1}{3}Fe_3 O_4 + (3 - b)H^ + \rightleftharpoons Fe(OH)_b^{3 - b} + \tfrac{1}{6}H_2 + (4/3 - b)H_2 O$$ were used to derive thermodynamic constants for each species. The extrapolared value for the Gibbs energy of formation of Fe2+ at 25°C is ?88.92±2.0 kJ-mole?1, consistent with standard reduction potentials in the range Eo(Fe2+)=?0.47±0.01 V. The temperature coefficient of the equilibrium Fe molality, (?m(Fe, sat.)/?T)m(H2).m(NaOH), changes from negative to positive as the NaOH molality is increased to the point where Fe(OH) 3 ? and Fe(OH) 4 ? predominate.  相似文献   

15.
Photoionizationlfragmentation of endohedral fullerenes was investigated by use of laser-de sorption time-offlight (LD-TOF) mass spectroscopy. The velocity distribution of the parent ion (LaC 82 + ) was found to be bimodal, as has previously been shown for laser desorbed C 60 + . The 0 fragment ions have velocity distributions corresponding predominantly to the fast parent ion distribution. The LD-TOF mass spectra taken with a relatively low laser fluence were independent of the delay time of the extraction pulse, showing only a monotonically decreasing pattern of LaC 2n + (as n decreased). However, with higher laser fluence, it was shown that the mass distributions drastically changed from the monotonically decreasing pattern to that of C 2n + and LaC 2n + with magic numbers. Based on these findings, a plausible photoionization/fragmentation mechanism is presented and discussed.  相似文献   

16.
To determine the analytical utility of photodissociation as a general fragmentation technique for tandem mass spectrometry of organic ions, the ability to fragment those ions considered least likely to absorb photons efficiently was investigated. To this end, the ability to photodissociate ions of aliphatic compounds by using 193-nm photons has been studied. Three fragment ions, the C4H 9 + ion from n-hexane, the C4H 7 + ion from 2-hexene, and C4H 5 + from 2-hexyne, have been photodissociated. The fragmentation efficiencies for all three ions studied were between 25 and 45%. The photofragment ion spectrum for each precursor ion studied is made up of characteristic fragments. These spectra demonstrate the ability to photodissociate aliphatic ions that originate from both saturated and unsaturated molecules. This provides substantial hope that virtually all organic ions will be able to be photodissociated by using 193-nm photons.  相似文献   

17.
The adiabatic bound state of an excess electron is calculated for a water cluster (H2O) 8 ? in the gas phase using the DFT-B3LYP method with the extended 6-311++G(3df,3pd) basis set. For the liquid phase the calculation is performed in the polarizable continuum model (PCM) with regard to the solvent effect (water, ? = 78.38) in the supermolecule-continuum approximation. The value calculated by DFT-B3LYP for the vertical binding energy (VBE) of an excess electron in the anionic cluster (VBE(H2O) 8 ? = 0.59 eV) agrees well with the experimental value of 0.44 eV obtained from photoelectron spectra in the gas phase. The VBE value of the excess electron calculated by PCM-B3LYP for the (H2O) 8 ? cluster in the liquid phase (VBE = 1.70 eV) corresponds well to the absorption band maximum λmax = 715 nm (VBE = 1.73 eV) in the optical spectrum of the hydrated electron hydr e hydr ? . Estimating the adiabatic binding energy (ABE)e hydr t- in the (H2O) 8 ? cluster (ABE = 1.63 eV), we obtain good agreement with the experimental free energy of electron hydration ΔG 298 0 (e hydr ? ) = 1.61 eV. The local model (H2O) 8 2? of the hydrated dielectron is considered in the supermolecule-continuum approximation. It is shown that the hydrated electron and dielectron have the same characteristic local structure: -O-H{↑}H-O- and -O-H{↑↓}H-O-respectively.  相似文献   

18.
The metastable decompositions of trimethylsilylmethanol, (CH3)3SiCH2OH (MW: 104, 1) and methoxytrimethylsilane, (CH3)3SiOCH3 (MW: 104, 2) upon electron ionization have been investigated by use of mass-analyzed ion kinetic energy (MIKE) spectroscopy and D labeling. The metastable ions of 1 ·+ decompose to give the fragment ions m/z 89 (CH 3 · loss) and 73 (·CH2OH loss), whereas those of 2 ·+ only yield the fragment ion m/z 89 (CH 3 · loss). The latter fragment ion is generated by loss of a methyl radical from the trimethylsilyl group via a simple cleavage reaction as shown by D labeling. However, the fragment ions m/z 89 and 73 from 1 ·+ are generated following an almost statistical exchange of the original methyl and methylene hydrogen atoms in the molecular ion as shown also by D labeling. This exchange indicates a complex rearrangement of the molecular ion of 1 ·+ prior to metastable decomposition for which as key step a 1,2-trimethylsilyl group migration from carbon to oxygen is suggested. A different behavior is also found between the source-generated m/z 89 ions from 1 ·+ which decompose in the metastable time region to give ions m/z 61 by loss of ethylene and those from 2 ·+ which decompose in the metastable region to yield ions m/z 59 by elimination of formaldehyde.  相似文献   

19.
Quantum chemical ab initio calculations have been performed for the vertical excitation energies and oscillator strengths of all low-lying electronically excited states of small helium cluster ions, He n + ,n=2, ..., 7. The geometrical structures of the ions were fixed at the equilibrium geometries of the respective ground states, for He 4 + and He 5 + also one alternative structure was considered. The low-lying excited states can be classified into two categories: the electronic transition can occur either within the central He 2 + or He 3 + unit or from the peripheral weakly bound He atoms to this unit. The latter transitions are very weak (f≈0.001), closely spaced, with vertical excitation energies of about 5.7 eV. The He 2 + and He 3 + units have strong transitions at 9.93 and 5.55 eV, respectively; these transitions are only slightly blue-shifted if He 2 + or He 3 + are placed as “chromophores” into the centre of a larger He n + cluster. The large difference in the vertical excitation energy of the strong transition should enable an experimental decision of the question whether the cluster ions have He 2 + or He 3 + cores.  相似文献   

20.
We calculate potential energies for charged and neutral jellium clusters which fragment in two pieces, in the framework of the liquid drop model plus Strutinsky shell corrections obtained from the two-centre harmonic oscillator. We consider the symmetric fragmentation of Na 4 + 2 + , Na 1 + 8 + , and Na38. Good agreement is found with results obtained by self-consistent methods, which are much more involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号