首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Two samples of cellulose (molecular weight 2.97 × 105 and 1.25 × 105) were transformed into carbanilates (CTC) which were then fractionated by the elution method at a constant composition of the acetone-water elution mixture with the column temperature gradually increasing from ?30°C to 30°C, and by the GPC method in acetone and tetrahydrofuran. Tetrahydrofuran appeared to be a more suitable solvent. The molecular weights of fractions obtained by the elution fractionation were determined by the light-scattering method in tetrahydrofuran. The width of fractions was determined by the GPC method (average M w/M n = 1.37); the [η] values and the Mark-Houwink constants (K = 5.3 × 10-3, a = 0.84) for tetrahydrofuran at 25°C were determined. The calibration curve for the GP method was constructed by means of the fractions thus obtained; it was demonstrated that the universal calibration curve according to Benoit can also be used. It was demonstrated that the molecular weight distribution of cellulose can be conveniently determined by conversion into CTC followed either by the elution fractionation (for preparative purposes) or by fractionation by the GPC method (for analytical purposes).  相似文献   

2.
Cellulose was dissolved in 6 wt % NaOH/4 wt % urea aqueous solution, which was proven by a 13C NMR spectrum to be a direct solvent of cellulose rather than a derivative aqueous solution system. Dilute solution behavior of cellulose in a NaOH/urea aqueous solution system was examined by laser light scattering and viscometry. The Mark–Houwink equation for cellulose in 6 wt % NaOH/4 wt % urea aqueous solution at 25 °C was [η] = 2.45 × 10?2 weight‐average molecular weight (Mw)0.815 (mL g?1) in the Mw region from 3.2 × 104 to 12.9 × 104. The persistence length (q), molar mass per unit contour length (ML), and characteristic ratio (C) of cellulose in the dilute solution were 6.0 nm, 350 nm?1, and 20.9, respectively, which agreed with the Yamakawa–Fujii theory of the wormlike chain. The results indicated that the cellulose molecules exist as semiflexible chains in the aqueous solution and were more extended than in cadoxen. This work provided a novel, simple, and nonpollution solvent system that can be used to investigate the dilute solution properties and molecular weight of cellulose. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 347–353, 2004  相似文献   

3.
To synthesize polyesters and periodic copolymers catalyzed by nonafluorobutanesulfonimide (Nf2NH), we performed ring‐opening copolymerizations of cyclic anhydrides with tetrahydrofuran (THF) at 50–120 °C. At high temperature (100–120 °C), the cyclic anhydrides, such as succinic anhydride (SAn), glutaric anhydride (GAn), phthalic anhydride (PAn), maleic anhydride (MAn), and citraconic anhydride (CAn), copolymerized with THF via ring‐opening to produce polyesters (Mn = 0.8–6.8 × 103, Mn/Mw = 2.03–3.51). Ether units were temporarily formed during this copolymerization and subsequently, the ether units were transformed into esters by chain transfer reaction, thus giving the corresponding polyester. On the other hand, at low temperature (25–50 °C), ring‐opening copolymerizations of the cyclic anhydrides with THF produced poly(ester‐ether) (Mn = 3.4–12.1 × 103, Mw/Mn = 1.44–2.10). NMR and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectra revealed that when toluene (4 M) was used as a solvent, GAn reacted with THF (unit ratio: 1:2) to produce periodic copolymers (Mn = 5.9 × 103, Mw/Mn = 2.10). We have also performed model reactions to delineate the mechanism by which periodic copolymers containing both ester and ether units were transformed into polyesters by raising the reaction temperature to 120 °C. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Cellulose samples with molecular weight distributions that are considerably narrower than those of the natural products can be obtained by at least three fundamentally different routes. (i) Synthesis of easily soluble derivatives, fractionation by means of well-established methods and subsequent regeneration, (ii) selective extraction of short chains from activated cellulose, using solvents of suitable marginal quality, and (iii) partition of the homologs between two coexisting phases formed by the demixing of homogeneous solutions. All three methods can be applied successfully. However, the efforts in terms of labor and required solvent differ considerably. Most of the experiments were performed with the following three cellulose samples: Avicel (M w = 30 kg mol–1, U = (M w/M n)–1 = 2.0), Solucell (M w = 230 kg mol–1, U = 1.8), and Stockstadt (M w = 320 kg mol–1, U = 5.7). Options (ii) and (iii) emerged most promising for large scale fractionation. The mixed solvent consisting of DMAc and LiCl turned out to be particularly versatile in both cases. In the pure state it can be used for incremental extraction (yielding quick access to orienting information on the width of the molecular weight distribution) as well as for one-step extraction. In combination with suitable precipitants (like acetone) it enables the realization of the coexistence of two liquid phases required with route (iii). One obstacle for fractionation that all methods share is the high viscosity of cellulose solutions. With the last method it is possible to mitigate this limitation considerably by the use of spinning nozzles for the mixing of feed and extracting agent.  相似文献   

5.
Solution characterization of the thermotropic liquid–crystalline copolyester synthesized from terephthalic acid, phenyl hydroquinone, and (1-phenylethyl) hydroquinone (2 : 1 : 1) has been performed. Viscometry, size exclusion chromatography, and light scattering have been carried out under the optimal conditions found for measurement: 85°C in a 50/50 mixture by weight of phenol/1,2,4-trichlorobenzene. The absolute weight-average molecular weight from light-scattering measurements served for calibration of indirect methods of charac-terization (e.g., the limiting viscosity number [η] is related to the molecular weight by [η] = 5.10 × 10?4 Mw0.72), and the molecular weight per unit chain length, $ \bar M_L * $, from light scattering and size exclusion chromatography (SEC) is found to be 28 Å?1, consistent with theoretical expectations. The calculated persistence length q is 28 Å. Moreover, the meth-odology of SEC characterization enables the kinetics of solid-state postpolymerization of this liquid-crystalline copolyester to be studied. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
A series of poly( N-isopropyl acrylamide) (PNIPAM) samples with molecular weight ranging from 2.23×10~4 to 130×10~4 and molecular weight distribution M_w/M_n≤1.28 were obtained by free radical polymerization and repeat precipitation fractionation. The molecular weight M_w, second virial coefficient A_2 as well as the mean-square-root radius of gyration 〈S~2〉 for PNIPAM samples in tetrahydrofuran (THF) were determined by light scattering, and the relations were estimated at A_2 ∞ M_w~0.25) and 〈S~2〉~(1/2)=1.56×10~(-9) M_w~(0.56). The intrinsic viscosity for THF solution and methanol solution of PNIPAM samples was measured and the Mark-Houwink equations were obtained as [η]=6.90×10~(-5) M~(0/73) (THF solution) and [η]=1.07×10~(-4) M~(0.71) (methanol solution). The above results indicate that both THF and methanol are good solvents for PNIPAM. The limit characteristic ratio C_∞ for PNIPAM in the two solutions was determined to be 10.6 by using Kurata-Stockmayer equation, indicating that the f  相似文献   

7.
The aggregation of Erwinia (E) gum in a 0.2 M NaCl aqueous solution was investigated by multi‐angle laser light scattering and gel permeation chromatography (GPC) combined with light scattering. The GPC chromatograms of five fractions contained two peaks; the fractions had the same elution volume but different peak areas, suggesting that aggregates and single chains coexisted in the solution at 25 °C. The apparent weight‐average molecular weights (Mw) of the aggregates and single chains for each fraction were all about 2.1 × 106 and 7.8 × 104, respectively. This indicates that the aggregates were composed of about 27 molecules of E gum in the concentration range used (1.0 × 10−6 to 5.0 × 10−4 g/mL). The weight fraction of the aggregates (wag) increased with increasing concentration, but the aggregates still existed even in an extremely dilute solution. The fractionation process and polymer concentration hardly affected the apparent aggregation number but significantly changed wag. The E‐gum Mw decreased sharply with an increase in temperature. When the E‐gum solution was kept at 100 °C, wag decreased sharply for 20 h and leveled off after 100 h. Once the aggregates were decomposed at a higher temperature, no aggregation was observed in the solution at 25 °C, indicating that the aggregation was irreversible. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1352–1358, 2000  相似文献   

8.
Concentrated solutions of cellulose and amylose were prepared with an ionic liquid 1‐butyl‐3‐methylimidazolium chloride (BmimCl), which was chosen as a good solvent for these polysaccharides. Dynamic viscoelasticity of the concentrated solutions was examined to obtain the molecular weight between entanglements, Me. The value of Me in the molten state (Me,melt), a material constant that reflecting the entanglement properties, was determined for cellulose and amylose by extrapolating Me to the “melt.” A marked difference in Me,melt was found: 3.2 × 103 for cellulose and 2.5 × 104 for amylose. The value of Me,melt for cellulose, which is composed of β‐(1,4) bonding of D ‐glucose units, is very close to those for polysaccharides with a random‐coil conformation such as agarose and gellan in BmimCl. The much larger Me,melt for amylose can be attributed to the helical nature of the amylose chain, α‐(1,4)‐linked D ‐glucose units. The effect of concentration on the zero‐shear viscosity for the solutions of cellulose and amylose was also examined. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

9.
Cellulose was dissolved rapidly in 4.6 wt % LiOH/15 wt % urea aqueous solution and precooled to –10 °C to create a colorless transparent solution. 13C‐NMR spectrum proved that it is a direct solvent for cellulose rather than a derivative aqueous solution system. The result from transmission electron microscope showed a good dispersion of the cellulose molecules in the dilute solution at molecular level. Weight‐average molecular weight (Mw), root mean square radius of gyration (〈s2z1/2), and intrinsic viscosity ([η]) of cellulose in LiOH/urea aqueous solution were examined with laser light scattering and viscometry. The Mark–Houwink equation for cellulose in 4.6 wt % LiOH/15 wt % urea aqueous solution was established to be [η] = 3.72 × 10?2 M in the Mw region from 2.7 × 104 to 4.12 × 105. The persistence length (q), molar mass per unit contour length (ML), and characteristic ratio (C) of cellulose in the dilute solution were given as 6.1 nm, 358 nm?1, and 20.8, respectively. The experimental data of the molecular parameters of cellulose agreed with the Yamakawa–Fujii theory of the worm‐like chain, indicating that the LiOH/urea aqueous solution was a desirable solvent system of cellulose. The results revealed that the cellulose exists as semistiff‐chains in the LiOH/urea aqueous solution. The cellulose solution was stable during measurement and storage stage. This work provided a new colorless, easy‐to‐prepare, and nontoxic solvent system that can be used with facilities to investigate the chain conformation and molecular weight of cellulose. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3093–3101, 2006  相似文献   

10.
This study deals with control of the molecular weight and molecular weight distribution of poly(vinyl acetate) by iodine‐transfer radical polymerization and reversible addition‐fragmentation transfer (RAFT) emulsion polymerizations as the first example. Emulsion polymerization using ethyl iodoacetate as the chain transfer agent more closely approximated the theoretical molecular weights than did the free radical polymerization. Although 1H NMR spectra indicated that the peaks of α‐ and ω‐terminal groups were observed, the molecular weight distributions show a relatively broad range (Mw/Mn = 2.2–4.0). On the other hand, RAFT polymerizations revealed that the dithiocarbamate 7 is an excellent candidate to control the polymer molecular weight (Mn = 9.1 × 103, Mw/Mn = 1.48), more so than xanthate 1 (Mn = 10.0 × 103, Mw/Mn = 1.89) under same condition, with accompanied stable emulsions produced. In the Mn versus conversion plot, Mn increased linearly as a function of conversion. We also performed seed‐emulsion polymerization using poly(nonamethylene L ‐tartrate) as the chiral polyester seed to fabricate emulsions with core‐shell structures. The control of polymer molecular weight and emulsion stability, as well as stereoregularity, is also discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
Static light scattering measurements were performed on dilute solutions of monodisperse poly(ethylene oxide) (PEO) in methanol at 25°C. PEOs of five different molecular weights ranging from nominal Mw = 8.6 × 104 to 9.13 × 105 were used. Linear Zimm plots were obtained for all the PEO samples: no downturn was observed at small angles, indicating that no large aggregates of PEO molecules exist in the solution. From the plots, values of the weight-average molecular weight, Mw, the radius gyration, RG, and the second virial coefficient, A2, were successfully determined for respective PEOs. Observed relationship between RG and Mw indicates that methanol is certainly a good solvent for the polymer. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
The variation of refractive index increments with molecular weight has been studied using solutions of polystyrene (2.2 × 103 < Mw < 1.8 × 106), poly(ethylene glycol) (1.0 × 103 < Mw < 2.0 × 104), and poly(dichlorophenylene oxide) (3.3 × 103 < Mw < 4.8 × 105) in toluene and poly(propylene glycol) (1.2 × 103 < Mw < 4.0 × 103) in benzene. The refractive index increments of polyglycols containing aliphatic ether moieties are negative in these solvents. However, poly(dichlorophenylene oxide) polymers, which contain aromatic ether moieties, give positive values. Linear and branched halogenated poly(phenylene oxide)s show an asymptotic approach of the refractive index increment to the same limiting value, but the approach is more rapid for the branched polymer.  相似文献   

13.
Short-range interactions between chain units of random copolymers in solution may be influenced by the composition or precisely by the distribution of sequence lengths of the same monomer units. Steric factors were derived for random copolymers of styrene and acrylonitrile with different compositions from the relation between the limiting viscosity number and the molecular weight. Mark-Houwink relations were obtained in methyl ethyl ketone (MEK) or in N,N′-dimethylformamide (DMF) at 30°C. for random copolymers containing 0.383 (Co-1) and 0.626 (Co-2) mole fraction of acrylonitrile, the expressions are: [η] = 3.6 X 10?4 M w0.62, for Co-1 in MEK; [η] = 5.3 X 10?4 M w0.61, for Co-2 in MEK; [η] = 1.2 × 10?4M w0.77 for Co-2 in DMF. With the Stockmayer-Fixman expression, these correlations become, respectively: [η]/M1/2 = 1.24 × 10?3 + 8.0 × 10?7 M1/2; and [η]/M1/2 = 1.70 × 10?3 + 6.3 × 10?7 M1/2; and [η]/M1/2 = 1.68 × 10?3 + 31.3 × 10?7 M1/2. From the unperturbed mean-square end-to-end distances, 〈L20, determined from the first terms of the latter expressions, together with 〈L20f calculated by assuming the completely free rotation, gives the steric factor σ = (〈L20/〈L20f)1/2 as 2.25 ± 0.05 for Co-1, and 2.31 ± 0.10 for Co-2. These values of σ are close to those for polystyrene (σ = 2.22 ± 0.05) and for polyacrylonitrile (σ = 2.20 ± 0.05). Therefore, it is concluded that the dimensions of random copolymers of styrene and acrylonitrile in solution are not significantly influenced by the composition. In other words, the unperturbed dimensions are not affected by a change in the alternation tendency between styrene units with phenyl side groups having a large molar volume and acrylonitrile units with nitrile groups responsible for the electrostatic interactions. On the other hand, the long-range interactions reflect the effect of sequence length. The Huggins constant and the second virial coefficient obtained from the light-scattering measurements have optimum values at about 0.5 mole fraction of acrylonitrile, where the greatest tendency for alternation seems to exist.  相似文献   

14.
ABSTRACT

Ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate](P(3HB)) was biosynthesized from glucose by a recombinant Escherichia coli XL-1 Blue (pSYL105) harboring Alcaligenes eutrophus PHB biosynthesis phbCAB genes. Six kinds of P(3HB) samples with differ-ent weight-average molecular weight (Mw ) from 1.1 × 106 to 11 × 106 measured by multi-angle laser light scattering were respectively produced at pH values of 7.0 to 6.5 in culture media. Solvent-cast P(3HB) films of high-molecular-weights over Mw of 3.3 × 106 were stretched easily and reproducibly at 160°C to a draw ratio of 400-650%. Mechanical properties of the stretched P(3HB) films were markedly improved relative to those of solvent-cast film. The elongation to break, Young's modulus, and tensile- strength of stretched film (Mw = 11 × 106) were 58%, 1.1 GPa, and 62 MPa, respectively. X-ray diffraction patterns indicated that the stretched film was highly oriented and had a high crystallinity over 80%. When the stretched film was annealed at 160°C for 2 hours, the mechanical properties were further improved (elongation to break = 67%, Young's modulus = 1.8 GPa and tensile strength = 77 MPa). The mechanical properties of the stretched-annealed film remained almost unchanged for 6 months at room temperature, suggesting that a high crystallinity of the stretched-annealed film avoids a progress of secondary crystallization.

  相似文献   

15.
Rigid‐rod poly(4′‐methyl‐2,5‐benzophenone) macromonomers were synthesized by Ni(0) catalytic coupling of 2,5‐dichloro‐4′‐methylbenzophenone and end‐capping agent 4‐chloro‐4′‐fluorobenzophenone. The macromonomers produced were labile to nucleophilic aromatic substitution. The molecular weight of poly(4′‐methyl‐2,5‐benzophenone) was controlled by varying the amount of the end‐capping agent in the reaction mixture. Glass‐transition temperatures of the macromonomers increased with increasing molecular weight and ranged from 117 to 213 °C. Substitution of the macromonomer end groups was determined to be nearly quantitative by 1H NMR and gel permeation chromatography. The polymerization of a poly(4′‐methyl‐2,5‐benzophenone) macromonomer [number‐average molecular weight (Mn) = 1.90 × 103 g/mol; polydispersity (Mw)/Mn = 2.04] with hydroxy end‐capped bisphenol A polyaryletherketone (Mn = 4.50 × 103 g/mol; Mw/Mn = 1.92) afforded an alternating multiblock copolymer (Mn = 1.95 × 104 g/mol; Mw/Mn = 6.02) that formed flexible, transparent films that could be creased without cracking. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3505–3512, 2001  相似文献   

16.
Interactions of cation/anion and cation/polymer in poly(N‐vinyl pyrrolidone) (PVP):silver triflate (AgCF3SO3) electrolytes with different weight‐average molecular weights (Mw's) of 1 × 106 (1 M), 3.6 × 105 (360 K), 4 × 104 (40 K), and 1 × 104 (10 K) have been studied with IR and Raman spectroscopies. According to the change of the C?O peak, coordination of silver ions by C?O in a low Mw (10 or 40 K) PVP matrix tend to be always thermodynamically favorable than high Mw (1 M or 360 K) PVP, demonstrating that the polymer matrix of low Mw dissolves silver salts more effectively. In addition, silver cations interact with both larger SO and smaller CF3 to form ion pairs, and the former interaction is stronger than the latter in a monomer or low Mw polymer matrix (40 K, 10 K), as demonstrated by theoretical ab initio calculation or experimental spectroscopy, respectively. However, CF3 interacts more favorably with silver cation than SO in high Mw (1 M and 360 K) PVP, which is ascribed to the steric effect of the bulky SO anion by highly entangled polymer chains. Despite the superior dissolving property of the low Mw polymer matrix, the membranes consisting of low Mw PVP and AgCF3SO3 exhibited poor separation performance for propylene/propane mixtures in comparison with those of high Mw, presumably because of the poor mechanical property for membrane formation in low Mw PVP. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1813–1820, 2002  相似文献   

17.
The dilute-solution properties of six poly(tetrahydro-4H-pyranyl-2-methacrylate) (PTHPM) fractions covering the molecular weight (M w) range 4.8 × 104 to 8.4 × 105 (M w/M n = 1.2–1.4) were studied in tetrahydrofuran, a good solvent, and in isobutanol, a θ solvent a t 30.5°C as determined by light scattering from the A2 vs. T plot. The unperturbed dimensions were calculated from a low-angle laser light-scattering and intrinsic-viscosity data. The results indicate that PTHPM is less extended chain than poly(cyclohexyl methacrylate) (PCyM). The higher flexibility of PTHPM parallels the lower T, (57°C) of this polymer relative to PCyM (66°C).  相似文献   

18.
The effects of molecular weight (MW) and MW distribution on the maximum tensile properties of polyethylene (PE), achieved by the uniaxial drawing of solution‐grown crystal (SGC) mats, were studied. The linear‐PE samples used had wide ranges of weight‐average (Mw = 1.5–65 × 105) and number‐average MWs (Mn = 2.0–100 × 104), and MW distribution (Mw/Mn = 2.3–14). The SGC mats of these samples were drawn by a two‐stage draw technique, which consists of a first‐stage solid‐state coextrusion followed by a second‐stage tensile drawing, under controlled conditions. The optimum temperature for the second‐stage draw and the resulting maximum‐achieved total draw ratio (DRt) increased with the MW. For a given PE, both the tensile modulus and strength increased steadily with the DRt and reached constant values that are characteristic for the sample MW. The tensile modulus at a given DRt was not significantly affected by the MW in the lower DRt range (DRt < 50). However, both the maximum achieved tensile modulus (80–225 GPa) and strength (1.0–5.6 GPa), as well as those at higher DRts > 50, were significantly higher for a higher MW. Although the maximum modulus reached 225 ± 5 for Mn ≥ 4 × 105, the maximum strength continued to increase with Mn even for Mn > 4 × 105, showing that strength is more strongly dependent on the Mn, even at higher Mn. Furthermore, it was found that each of the maximum tensile modulus and strength achieved could be expressed by a unique function of the Mn, independently of the wide variations of the sample MW and MW distribution. These results provide an experimental evidence that the Mn has a crucial effect on the tensile properties of extremely drawn and chain‐extended PE fibers, because the structural continuity along the fiber axis increases with the chain length, and hence with the Mn. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 153–161, 2006  相似文献   

19.
The solubility and interdiffusion between hydroxypropylcellulose samples of various molecular masses (M w = 8 × 104, 14 × 104, 37 × 104, 85 × 104, and 115 × 104) and poly(ethylene glycol) (M w = 400 and 1500) in the range 18–210°C have been studied by optical interferometry and polarization microscopy methods. Oligomeric poly(ethylene glycols) have been considered as solvents for hydroxypropylcellulose. Phase diagrams have been constructed, and Flory-Huggins thermodynamic interaction parameters have been calculated. For the hydroxypropylcellulose-poly(ethylene glycol) 400 system, an LC and crystalline equilibria have been realized. An increase in the M w of hydroxypropylcellulose to 1500 leads to the appearance of a wide region of amorphous phase segregation with a UCST, whereas the liquidus line is conserved at high concentrations of hydroxypropylcellulose. Such a superposition of two kinds of phase equilibrium that is achieved only with a change in M w of the oligomeric solvent has been observed for the first time. For all the systems under examination, the kinetics of diffusion mixing has been estimated and the activation energies of the process have been calculated. The concentration dependences of diffusion coefficients demonstrate jumps in the mesomorphic-transition region.  相似文献   

20.
Ultrasonic (70 W, 20 kHz) solution (2%) degradations of poly(alkyl methacrylates) have been carried out in toluene at 27°C and in tetrahydrofuran (THF) at -20°C. Mw and Mn of all polymers (before and after sonification) were computed from GPC. Irrespective of the alkyl substituent, Mw decreased rapidly at first and then slowly approached limiting values. All Mw/Mn ratios were in the vicinity of 1.5 at the limiting chain lengths. For identical Mn, the rate constants k were (4.2 ± 2.0) × 10?6 min?1 in toluene at 27°C and (5.4 ± 2.0) × 10?6 min?1 in THF at -20°C. For poly(isopropyl methacrylate) and poly(octadecyl methacrylate) with higher, but identical, Mn,0, k values were higher ((9.0 ± 1.0) × 10?6 min?1 at 27°C and (18.0 ± 1.5) × 10?6 min?1 at -20°C). This suggests that Mn,0 and not the bulk size of the alkyl substituents is the factor that determines the rate of degradation. Lowering of the temperature accelerates degradation due primarily to lower chain mobility of poly-(alkyl methacrylates) and enhanced cavitation. The average number of chain scissions ([(Mn)0/(Mn)t] - 1) calculated from component degradation data are much higher than those obtained with overall Mn,t values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号