首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the first prediction for the fragmentation dynamics following electron impact ionization of neutral krypton clusters from 2 to 11 atoms. Fragment proportions and parent ion lifetimes are deduced from a molecular dynamics with quantum transitions study in which the nuclei are treated classically and the transitions between electronic states quantum mechanically. The potential-energy surfaces are derived from a diatomics-in-molecules model to which induced dipole-induced dipole and spin-orbit interactions are added. The results show surprisingly fast and extensive fragmentation for clusters of such a heavy atom, although not as extensive as in the case of neon clusters studied previously [D. Bonhommeau et al., J. Chem. Phys. 123, 54316 (2005)]. The parent ion lifetimes range from 2.8 to 0.7 ps, and the most abundant fragment is Kr(2) (+) for all studied sizes, followed by Kr(+) for sizes smaller than 7 atoms and by Kr(3) (+) for larger sizes. Trimer and larger fragments are found to originate from the lower electronic states of parent ions. The comparison with preliminary results from experiments on size-selected neutral clusters conducted by Steinbach et al. (private communication) reveal a good agreement on the extensive character of the fragmentation. It is checked that the additional internal energy brought by the helium scattering technique used for size selection does not affect the fragment proportions. In addition, the existence of long-lived trajectories is revealed, and they are found to be more and more important for larger cluster sizes and to favor the stabilization of larger fragments. The implications of this work for microsecond-scale dynamics of ionized rare-gas clusters are discussed. In particular, given the extent of fragmentation of the parent clusters and the fast kinetics of the whole process, the small cluster ions that exhibit a monomer loss in the microsecond time window must originate from much larger neutral precursors. The decay rate of the II(12)(u) state of the ionic dimer Kr(2) (+) by spin-orbit coupling is found to be of the order of 3 ps, in contrast to the expected tens of microseconds, but only reasonably faster than the corresponding state of HeNe(+). Finally, the spin-orbit interaction strongly affects both the Kr(+)Kr(2) (+) ratio and some of the characteristic times of the dynamics, especially for smaller sizes, but not the overall dependence of the fragment proportions as a function of cluster size.  相似文献   

2.
Noble metal cluster ions Cu(n)(+), Ag(n)(+) and Au(n)(+) (n = 3-21) have been stored in a Penning trap and photodissociated by low intensity laser pulses of 10 ns at photon energies of 3.49 eV and 4.66 eV. The fragmentation pathways, neutral monomer and dimer evaporation, have been monitored as a function of cluster size, excitation energy and element. It is found that the behavior of the branching ratio between monomer and dimer evaporation as a function of excitation energy depends on the metal under investigation. In particular, the slope of the energy dependence is positive for silver but negative for gold and copper cluster ions. Furthermore, photoabsorption cross sections are determined from observed total fragment yields in single-photon dissociation.  相似文献   

3.
The fragmentation dynamics of argon clusters ionized by electron impact is investigated for initial cluster sizes up to n = 11 atoms. The dynamics of the argon atoms is modeled using a mixed quantum-classical method in which the nuclei are treated classically and the transitions between electronic states quantum mechanically. The potential-energy surfaces are derived from a diatomics-in-molecules model with the addition of the induced dipole-induced dipole and spin-orbit interactions. The results show extensive and fast fragmentation. The dimer is the most abundant ionic fragment, with a proportion increasing from 66% for n = 2 to a maximum of 95% for n = 6 and then decreasing down to 67% for n = 11. The next abundant fragment is the monomer for n < 7 and the trimer otherwise. The parent ion dissociation lifetimes are all in the range of 1 ps. Long-lived trajectories appear for initial cluster sizes of seven and higher, and favor the formation of the larger fragments (trimers and tetramers). Our results show quantitative agreement with available experimental results concerning the extensive character of the fragmentation: Ar+ and Ar2(+) are the only ionic fragments for sizes up to five atoms; their overall proportion is in quantitative agreement for all the studied sizes; Ar2(+) is the main fragment for all sizes; stable Ar3(+) fragments only appear for n > or = 5, and their proportion increases smoothly with cluster size from there. However, the individual ionic monomer and dimer fragment proportions differ. The experimental ones exhibit oscillations with initial cluster size, with a slight tendency to decrease on average for the monomer. In contrast our results show a monotonic, systematic evolution, similar to what was found in our earlier studies on neon and krypton clusters. Several hypotheses are discussed in order to find the origin of this discrepancy. Finally, the metastable II(1/2)u and II(1/2)g states of Ar2(+) are found to decay with a lifetime of 3.5 and 0.1 ps, respectively, due to spin-orbit coupling. The difference with the commonly accepted microsecond range value for rare-gas dimer ions could originate from the role of autoionizing states in the formation of the parent ions.  相似文献   

4.
The fragmentation of the small Xen n=2−5 clusters following 70 eV electron impact ionization has been investigated in a size selective experiment and simulated using non-adiabatic dynamics. The experimental results show that the clusters strongly fragment to yield monomer Xe+ (more than 90%) and dimer Xe2+ fragments (the remaining few percent). Trimer Xe3+ fragments first occur from the neutral pentamers Xe5 in a very low yield of approximately 0.3%. The present results are compared with the previous ones for Kr and Ar clusters. It is shown that the Xe and Kr clusters exhibit a qualitatively similar behavior with a strong propensity for monomer fragments, while in the Ar case dimers prevail. The theoretical calculations also reveal a strong fragmentation to the dimer and monomer fragments. However, the dimer Rg2+ is predicted to be the major product for all rare gases (Rg ≡ Ar, Kr, Xe). Possible reasons for the discrepancy between theory and experiment are discussed.  相似文献   

5.
We report a theoretical study of the effect induced by a helium nanodroplet environment on the fragmentation dynamics of a dopant. The dopant is an ionized neon cluster Ne(n) (+) (n=4-6) surrounded by a helium nanodroplet composed of 100 atoms. A newly designed mixed quantum/classical approach is used to take into account both the large helium cluster zero-point energy due to the light mass of the helium atoms and all the nonadiabatic couplings between the Ne(n) (+) potential-energy surfaces. The results reveal that the intermediate ionic dopant can be ejected from the droplet, possibly with some helium atoms still attached, thereby reducing the cooling power of the droplet. Energy relaxation by helium atom evaporation and dissociation, the other mechanism which has been used in most interpretations of doped helium cluster dynamics, also exhibits new features. The kinetic energy distribution of the neutral monomer fragments can be fitted to the sum of two Boltzmann distributions, one with a low kinetic energy and the other with a higher kinetic energy. This indicates that cooling by helium atom evaporation is more efficient than was believed so far, as suggested by recent experiments. The results also reveal the predominance of Ne(2) (+) and He(q)Ne(2) (+) fragments and the absence of bare Ne(+) fragments, in agreement with available experimental data (obtained for larger helium nanodroplets). Moreover, the abundance in fragments with a trimeric neon core is found to increase with the increase in dopant size. Most of the fragmentation is achieved within 10 ps and the only subsequent dynamical process is the relaxation of hot intermediate He(q)Ne(2) (+) species to Ne(2) (+) by helium atom evaporation. The dependence of the ionic fragment distribution on the parent ion electronic state reached by ionization is also investigated. It reveals that He(q)Ne(+) fragments are produced only from the highest electronic state, whereas He(q)Ne(2) (+) fragments originate from all the electronic states. Surprisingly, the highest electronic states also lead to fragments that still contain the original ionic dopant species. A mechanism is conjectured to explain this fragmentation inhibition.  相似文献   

6.
Structure and dynamics of size-selected charged pyrrole clusters have been studied by means of molecular beam scattering experiments and ab initio calculations. Small neutral Pyn clusters were produced in Py/He mixture expansions, and the scattering experiment with a secondary beam of He-atoms was exploited to select the neutral clusters of different sizes. The complete size-selected fragmentation patterns for the neutral dimer to the tetramer after an electron impact ionization at 70 eV were obtained from the measurements of the angular and velocity distributions at different fragment masses. All the investigated cluster sizes decay mainly to the monomer ions Py+1 (from 60 to 80% of the corresponding neutral size) and to the dimer ion Py+2 (20-30%). The trimer ions Py+3 are generated to less than 10% from the neutral trimer and tetramer. To explain the observed results, we have calculated the structures and energetics of pyrrole clusters up to the trimer for the neutral and the ionic state using DFT and PMP2 methods. The ab initio calculations show that ionized pyrrole clusters are formed with a dimeric core that is solvated by neutral pyrrole molecules. In addition, the ground and ionic state of Py-Ar complexes were calculated at CCSD(T) level with extended basis in relevance to the mixed clusters produced in supersonic expansions of Py seeded in Ar. The calculated dissociation energies of the Py-Ar and (Py-Ar)+ complexes indicate that Ar atoms are able to rapidly evaporate after ionization. The combined analysis of the fragmentation probabilities, and calculations allowed us to estimate the distribution of energy deposited in the clusters after the electron impact, which peaks above 1 eV and has a tail up to 5 eV.  相似文献   

7.
The near threshold photofragmentation pattern of δ-valerolactam(+) and δ-valerolactam(2)(+) has been recorded combining electron/ion coincidence techniques and vacuum ultraviolet synchrotron radiation. The experimental method yields the fragment intensity as a function of the internal energy deposited into the parent cation, up to 3.1 eV above the first ionization threshold. In parallel, ab initio studies on the δ-valerolactam(+) and δ-valerolactam(2)(+) cations and their ionic and neutral fragmentation products have been performed with the aim of determining the isomers of the ionic products observed experimentally as well as of their neutral counterparts. These computations were performed using the PBE0 exchange-correlation functional and the aug-cc-pVDZ basis set. We found good agreement between the calculated reaction enthalpies and experimental appearance energies of the ions. More generally, our experimental and theoretical results reveal that the fragmentation of the ionic species of interest leads to a multitude of neutral and ionic fragments, which may be formed after intramolecular isomerization and complex decomposition processes. Multistep reaction pathways are expected.  相似文献   

8.
(CO2) n , (NO) n and (NH3) n clusters are generated in a supersonic molecular beam and size selected by scattering from an He beam. By measurements of angular dependent mass spectra, TOF distributions and the angular dependence of the scattered signal quantitative information on the fragmentation probability by electron impact is derived. The van der Waals systems (CO2) n and (NO) n appear only at masses which are simply multiples of the monomer mass. The preferred cluster ion is the monomer ion for all investigated cluster sizes withn=2 to 4. The fragment pattern for the quasi-hydrogen bonded (NH3) n -cluster shows, beside a large number of fragment masses, a preference for protonated ions. The results are explained in terms of simple models based on the structural change from the neutral to the ionized configuration and the fragmentation pattern of the monomer followed by ionmolecule reactions.  相似文献   

9.
The gas-phase ion chemistry of 1,1,1- and 1,1,2-trichlorotrifluoroethane was investigated with an ion trap mass spectrometer. Following electron ionization both compounds (M) fragment to [M - Cl](+), CX(3)(+), CX(2)(+), CX(+) (X = F and/or Cl) and Cl(+). The reactivity of each of these fragments towards their neutral precursors was studied to obtain product and kinetic data. Whereas [M - Cl](+), CCl(3)(+) and CCl(2)F(+) cations are unreactive under the experimental conditions used, all other species react via halide abstraction to give [M - Cl](+) and, to a far lesser extent, [M - F](+). In addition, CX(2)(+) ions form CClX(2)(+) in a process which formally amounts to chlorine atom abstraction, but more likely involves chloride ion abstraction followed by charge transfer. CX(+) ions also form minor amounts of CX(3)(+) product ions, possibly via chloride abstraction followed by or concerted with dihalocarbene elimination from the (incipient) [M - Cl](+) ion. Trivalent carbenium ions are less reactive than divalent species, which in turn are less reactive than the monovalent ions (reaction efficiencies are given in parentheses): CF(3)(+)(0.70) < CF(2)(+)(0.78) < CF(+)(0.96). More interestingly, within each family of ions reactivity increases with the number of fluorine substituents (e.g. CF(2)(+) > CFCl(+) > CCl(2)(+) and CF(+) > CCl(+)), i.e. reactivity increases with the ion thermochemical stability, as measured by available standard free enthalpies of formation. Evaluation of the energetics involved shows that reactions are largely driven by the stability of the neutrals more than of the ions. Finally, the products observed in the reaction of Cl(+) are attributed to ionization of the neutral via charge transfer and fragmentation.  相似文献   

10.
The analysis of organic and biological substances by secondary-ion mass spectrometry (SIMS) has greatly benefited from the use of cluster ions as primary bombarding species. Thereby, depth profiling and three-dimensional (3D) imaging of such systems became feasible. Large Ar(n)(+) cluster ions may constitute a further improvement in this direction. To explore this option, size-selected Ar(n)(+) cluster ions with 300 ≤ n ≤ 2200 (bombarding energies 5.5 and 11 keV) were used to investigate the emission of positive secondary ions from four amino acid specimens (arginine, glycine, phenylalanine, and tyrosine) by time-of-flight SIMS. For all cluster sizes, the protonated molecule of the respective amino acid is observed in the mass spectra. With increasing cluster size the number of fragment ions decreases strongly in relation to the intact molecules, to the extent that the fraction of fragment ions amounts to less than 10% in some cases. Such 'soft' emission processes also lead the ejection of dimers and even multimers of the amino acid molecules. In the case of the phenylalanine, secondary ion species composed of up to at least seven phenylalanine moieties were observed. Tentatively, the ionization probability of the emitted molecules is envisaged to depend on the presence of free protons in the emission zone. Their number can be expected to decrease concurrently with the decreasing amount of fragmentation for large Ar(n)(+) cluster ions (i.e. for low energies per cluster atom).  相似文献   

11.
The fragmentation behaviour of size selected neutral (D2O) n clusters withn4 after ionization with 70 eV electrons is subject of this work. Size selection by scattering the cluster beam from a He target beam in combination with a quadrupole mass filter and time resolved measurements at specific laboratory angles enables us to determine the neutral precursor masses of the detected ions. The measured fragment pattern is dominated by deuterated ions of the form (D2O) nx D+ withx1. The dimer fragmentation which leads with a probability of 62.5% to the D3O+ ion and with 37.5% to D2O+ can be explained by fast intracluster ion-molecule reactions of charged monomer fragments reacting with the partner molecule. For larger clusters the fragmentation process can be rationalised by the creation of an initially highly excited D3O+ (D2O) x complex which is stabilized by evaporating additional monomer units with the main fragment channel (D2O)D+ forn=3 and (D2O)2D+ forn=4. With increasing cluster size an increasing tendency of evaporation of more than one water monomer unit has been observed.  相似文献   

12.
Electron impact ionization of helium nanodroplets containing a dopant, M, can lead to the detection of both M(+) and helium-solvated cations of the type M(+)·He(n) in the gas phase. The observation of helium-doped ions, He(n)M(+), has the potential to provide information on the aftermath of the charge transfer process that leads to ion production from the helium droplet. Here we report on helium attachment to the ions from four common diatomic dopants, M = N(2), O(2), CO, and NO. For experiments carried out with droplets with an average size of 7500 helium atoms, the monomer cations show little tendency to attach and retain helium atoms on their journey out of the droplet. By way of contrast, the corresponding cluster cations, M(n)(+), where n ≥ 2, all show a clear affinity for helium and form He(m)M(n)(+) cluster ions. The stark difference between the monomer and cluster ions is attributed to more effective cooling of the latter in the aftermath of the ionization event.  相似文献   

13.
Ionization and fragmentation of solid C(60) dispersed on a silicon plate are investigated by femtosecond laser ablation. Bimodal mass distribution with large fragment ions C(60-2n) (+) (0< or =n< or =11) and small fragment ions C(n) (+) (13< or =n< or =28), formation of dimer ion (C(60))(2) (+), and delayed ionization of C(60) have been observed as reported in gas phase experiments with nanosecond laser excitation. Metastable dissociation of small fragment ions C(n) (+) has been observed for the first time, which suggests different structures of fragment ions compared with those of well-studied carbon cluster ions. From these observations, strong coupling of laser energy to electronic degrees of freedom of solid C(60) has been revealed for femtosecond laser ablation as compared with excitation in the gas phase.  相似文献   

14.
Clusters consisting of normal H2 molecules, produced in a free jet expansion, are size selected by diffraction from a transmission nanograting prior to electron impact ionization. For each neutral cluster (H2)(N) (N=2-40), the relative intensities of the ion fragments Hn+ are measured with a mass spectrometer. H3+ is found to be the most abundant fragment up to N=17. With a further increase in N, the abundances of H3+, H5+, H7+, and H9+ first increase and, after passing through a maximum, approach each other. At N=40, they are about the same and more than a factor of 2 and 3 larger than for H11+ and H13+, respectively. For a given neutral cluster size, the intensities of the ion fragments follow a Poisson distribution. The fragmentation probabilities are used to determine the neutral cluster size distribution produced in the expansion at a source temperature of 30.1 K and a source pressure of 1.50 bar. The distribution shows no clear evidence of a magic number N=13 as predicted by theory and found in experiments with pure para-H2 clusters. The ion fragment distributions are also used to extract information on the internal energy distribution of the H3+ ions produced in the reaction H2+ + H2-->H3+ +H, which is initiated upon ionization of the cluster. The internal energy is assumed to be rapidly equilibrated and to determine the number of molecules subsequently evaporated. The internal energy distribution found in this way is in good agreement with data obtained in an earlier independent merged beam scattering experiment.  相似文献   

15.
The photoionization of enantiomerically pure epichlorohydrin (C(3)H(5)OCl) has been studied using linearly and circularly polarized vacuum ultraviolet synchrotron radiation. The threshold photoelectron spectrum was recorded and the first three bands assigned using molecular orbital calculations for the expected conformers, although uncertain experimental conformer populations and an anticipated breakdown in Koopmans' theorem leave some ambiguity. Measurements of the photoelectron circular dichroism (PECD) were obtained across a range of photon energies for each of these bands, using electron velocity map imaging to record the angular distributions, during which a record PECD chiral asymmetry factor of 32% was observed. A comparison with calculated PECD curves clarifies the assignment achieved using ionization energies alone and further suggests a likely relative population of the conformers. Threshold photoelectron-photoion coincidence methods were used to study the ionic fragmentation of epichlorohydrin. Fragment ion appearance energies show nonstatistical behavior with clear indications that the cationic epoxide ring is unstable and lower energy decay channels proceeding via ring breaking are generally open. Extensive neutral homochiral clusters of epichlorohydrin may be formed in supersonic molecular beam expansions seeded in Ar. Electron angular distribution measurements made in coincidence with dimer and trimer ions are used to effect an examination of the PECD associated with ionization of size-selected neutral cluster species, and these results differ clearly from PECD of the neutral monomer. The shifted ionization thresholds of the n-mers (n = 2, ..., 7) are shown to follow a simple linear relationship, but under intense beam expansion conditions the monomer deviates from this relationship, and the monomer electron spectra tail to below the expected monomer adiabatic ionization potential (IP). PECD measurements made in coincidence with monomer ions obtained under different beam expansion conditions were used to identify unambiguously a contribution from dissociative photoionization of larger clusters to the monomer parent mass ion yield above and below its adiabatic IP.  相似文献   

16.
Dissociative recombination (DR) of the dimer ion (NO)(2) (+) has been studied at the heavy-ion storage ring CRYRING at the Manne Siegbahn Laboratory, Stockholm. The experiments were aimed at determining details on the strongly enhanced thermal rate coefficient for the dimer, interpreting the dissociation dynamics of the dimer ion, and studying the degree of similarity to the behavior in the monomer. The DR rate reveals that the very large efficiency of the dimer rate with respect to the monomer is limited to electron energies below 0.2 eV. The fragmentation products reveal that the breakup into the three-body channel NO+O+N dominates with a probability of 0.69+/-0.02. The second most important channel yields NO+NO fragments with a probability of 0.23+/-0.03. Furthermore, the dominant three-body breakup yields electronic and vibrational ground-state products, NO(upsilon=0)+N((4)S)+O((3)P), in about 45% of the cases. The internal product-state distribution of the NO fragment shows a similarity with the product-state distribution as predicted by the Franck-Condon overlap between a NO moiety of the dimer ion and a free NO. The dissociation dynamics seem to be independent of the NO internal energy. Finally, the dissociation dynamics reveal a correlation between the kinetic energy of the NO fragment and the degree of conservation of linear momentum between the O and N product atoms. The observations support a mechanism in which the recoil takes place along one of the NO bonds in the dimer.  相似文献   

17.
The dynamics of ionic rare-gas trimers (Ar(3) (+), Kr(3) (+), and Xe(3) (+)) produced by a sudden ionization of neutral precursors is investigated theoretically with a hybrid classical-quantum method for solving the equations of motion governed by a Hamiltonian obtained from a previously tested diatomics-in-molecules model. Initial conditions are selected with Monte Carlo sampling. Two possibilities for generating the initial electronic state are considered: diabatic (local) and adiabatic (delocalized). The dynamics generally leads to fragmentation, producing either monomer ions or dimer ions in a relatively short time; however, a large number of long-lived metastable trimer ions are also seen in some cases. We have analyzed the dynamics with respect to the fraction of monomer ions produced, the distribution of the kinetic energy of the products, and the distribution of fragmentation times of the trimers. Initial diabatic ionization is associated with much faster fragmentation than adiabatic ionization. Spin-orbit coupling plays an important role in the fragmentation dynamics.  相似文献   

18.
A comprehensive experimental study of the OH stretching vibrations of size-selected clusters of enantiopure and racemic methyl lactate is presented. For the size selection, we measured angular dependent mass spectra and time-of-flight distributions at the different fragment masses. In this way the fragmentation of these clusters upon electron impact ionization is obtained. The largest fragment masses of the neutral (MLac)n clusters are the protonated (MLac)n-1H+ ions. The results of a pressure dependent study in an FTIR jet experiment are compared with completely size-selected experiments based on atomic beam deflection and depletion spectroscopy. The size assignments and spectra agree for dimers and trimers. Structures and spectral information for the trimer and the tetramer at density functional and MP2 level are provided. Selective self-aggregation and chiral recognition was observed for homochiral trimers. They exhibit a ring structure bound by OH...OH hydrogen bonds. A spectacular switch in the hydrogen bonding topology was observed for the tetramer. The homochiral enantiomer exhibits cooperative OH...OH bonding, while the heterochiral version shows isolated OH...O=C bonding in a symmetric SRSR arrangement. The crucial ingredients for this identification are the size-selective IR spectra with their different shifts and line patterns which are reproduced by the calculations.  相似文献   

19.
Multiply-charged noncovalent cluster anions of adenosine-5'-monophosphate (AMP) were formed by electrospray ionization (ESI). Ions in higher charge states were observed when the ions were accumulated in an ion trap with helium buffer gas before detection. We determined the smallest size (n(a)) or appearance size as a function of charge state (q), i.e., n(a) = 4 for q = 2, n(a) = 8 for q = 3, and n(a) = 13 for q = 4. The relation between n(a) and q can be described by a charged droplet model. When the size is larger than n(a) for a given q, the fragmentation pathway of an anion cluster is dominated by loss of neutral fragments. In contrast, when the size approaches the appearance size, only charged fragments are formed.  相似文献   

20.
Multiple-ion coincidence momentum imaging experiments were carried out for K-shell (1s) excited Ar clusters containing about 130 atoms and Kr clusters containing about 30, 90, and 160 atoms. The time-of-flight spectra reveal that the major products of the Coulomb explosion are singly charged ions. With increasing the number of charges generated in clusters, the momentum of monomer ions such as Ar(+) and Kr(+) increases, while that of cluster ions such as Ar(3) (+), Kr(2) (+), and Kr(3) (+) decreases. This observation indicates the site-specific decay process that the heavier ions appear in the central part of clusters. We have also investigated the momentum distribution in various fragmentation channels and the branching ratio of each channel at the Coulomb explosion. When the number N(coin) of coincidently detected ions is four, for example, the most frequent channel from Kr clusters containing 30 atoms is to emit simply four Kr(+) ions, but Kr(2) (+) ions participate in the fragmentation from the larger Kr clusters. The fragmentation channel in which two Ar(2) (+) ions are emitted becomes dominant with increasing N(coin), and the average momentum of Ar(2) (+) ion in this channel is larger than that in the channels where only single Ar(2) (+) is emitted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号