首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-walled carbon nanotubes (MWNTs) were modified by oxyfluorination treatment at several different temperatures of 20, 100, 200, and 300 °C. The changes of surface properties of oxyfluorinated MWNTs were investigated using X-ray photoelectron spectroscopy (XPS) method. As a result, it was found that surface fluorine contents were varied with changing an oxyfluorination temperature and showed a maximum value at 100 °C. By changing the treatment temperature in the process of oxyfluorination for carbon supports, the surface characteristics of MWNTs had been modified, resulting that the size and loading content of deposited Pt on the modified carbon supports could be changed. Consequently, Pt deposited MWNTs that were treated at 100 °C (Pt/100-MWNTs) showed the best electroactivity among samples. The enhanced electroactivity was dependent on the higher surface area of electrochemical reaction for metal catalyst, which was related to the particle size and the morphology of the deposited particle catalysts.  相似文献   

2.
Fluorinated graphites (CF0.47) were obtained by reaction at room temperature of fluorine gas with graphite in the presence of boron trifluoride and hydrogen fluoride as catalysts. Their thermal treatments under fluorine at temperatures up to 600 °C lead to a progressive increase of the fluorine level resulting in an highly fluorinated graphite (CF1.02). Whatever the fluorination level, a stage one fluorine-graphite intercalation compound is obtained. The sp2 carbon hybridization is maintained for treatment temperature below 300 °C and two types of structure coexist for TT in the range 350-550 °C. Finally, above 550 °C, carbon hybridization is sp3.The resulting materials were studied by 11B, 1H, and 19F NMR and EPR at different experimental temperatures giving informations about the intercalated fluoride species, the temperature of their removal from the host fluorocarbon matrix, as well as their mobility.  相似文献   

3.
A range of nitrogen doped carbon nanotubes (N-CNTs) was produced by a nebulised floating catalyst method at 850 °C using a mixture of toluene and 1-8% nitrogen containing reagents (a range of amines and amides). The carbon nanotube (CNT) products were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), CHN analysis as well as Raman spectroscopy. Differences due to the different N containing reagents were noted but in general all reagents gave aligned CNTs that at low concentration (1%) were longer and wider than those produced without nitrogen. Increased N content in the reactant mixture gave doped tubes that became shorter and showed more disorder. Treatment of the N-CNTs with nitric acid (microwave, 30 min) gave samples that were chemically modified by the acid (loss of alignment, narrower tubes and more facile oxidation). It appears in general that the amount of N in the nitrogen containing reagent is more important than the source and type of the N atoms used as revealed by trends in the morphology (diameter, length) of the N-CNTs produced.  相似文献   

4.
Nickel nanoparticles were prepared and uniformly supported on multi-walled carbon nanotubes (MWCNTs) by reduction route with CNTs as a reducing agent at 600 °C. As-prepared nickel nanoparticles were single crystalline with a face-center-cubic phase and a size distribution ranging from 10 to 50 nm, and they were characterized by transmission electron microscopy (TEM), high-resolution TEM and X-ray diffraction (XRD). These nickel nanoparticles would be coated with graphene layers, when they were exposed to acetylene at 600 °C. The coercivity values of nickel nanoparticles were superior to that of bulk nickel at room temperature.  相似文献   

5.
A range of substituted ferrocenes were used as catalysts for the synthesis of multi-walled carbon nanotubes (MWCNTs) and carbon fibers (CFs). These products were obtained in the temperature range 800-1000 °C, in a reducing atmosphere of 5% H2 by pyrolysis of (CpR)(CpR′)Fe (R and R′ = H, Me, Et and COMe) in toluene solution. The effect of pyrolysis temperature (800-1000 °C), catalyst concentration (5 and 10 wt.% in toluene) and solution injection rate (0.2 and 0.8 ml/min) on the type and yield of carbonaceous product synthesized was investigated. Carbonaceous products formed include graphite film (mostly at high temperature; 900-1000 °C), carbon nanotubes and carbon fibers. The carbonaceous materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The ferrocene ring substituents influenced both the CNT diameter and the carbon product formed.  相似文献   

6.
The addition of carbenes CX(2) (X=H, Cl) to single-walled carbon nanotubes (SWNTs) was investigated by density functional theory and finite, hydrogen-terminated nanotube clusters or periodic boundary conditions in conjunction with basis sets of up to polarized triple-zeta quality. For armchair [(3,3) to (12,12)] and zigzag tubes [(3,0) to (18,0)], reaction of CH(2) with the C--C bond oriented along the tube axis (A) is less exothermic than with those C--C bonds having circumferential (C) orientation. This preference decreases monotonically with increasing tube diameter for armchair, but not for zigzag tubes; here, tubes with small band gaps have a very low preference for circumferential addition. Axial addition results in cyclopropane products, while circumferential addition produces "open" structures for both armchair and zigzag tubes. The barriers for addition of dichlorocarbene to a (5,5) SWNT, studied for a finite C(90)H(20) cluster, are higher than that for addition to C(60), in spite of similar diameters of the carbon materials. Whereas addition of CCl(2) to [60]fullerene proceeds in a concerted fashion, addition to a (5,5) armchair SWNT is predicted to occur stepwise and involve a diradicaloid intermediate according to B3LYP, PBE, and GVB-PP computations. Addition to C bonds of (5,5) armchair tubes resulting in the thermodynamically more stable insertion products is kinetically less favorable than that to A bonds yielding cyclopropane derivatives.  相似文献   

7.
The process of thermal imidization reaction is significant for temperature and time control in the polyimide industry. Here, we report the effect of carbon nanotubes and their states of dispersion on the thermal imidization of the precursor films of polyimide (poly(amic acid)) for the first time. The curing process was followed by measuring Fourier transform-infrared (FT-IR) spectra, fluorescence spectra, thermogravimetric-differential scanning calorimeter (TG-DSC) properties and the refractive indices of films. It was found that by evenly dispersing 1 wt% of carbon nanotubes assisted by a dispersant in the poly(amic acid),the full imidization temperature of the polyimide can be reduced from 300 °C to 250 °C. Different states of distribution of CNTs were observed by light microscopy and scanning electron microscopy, and proved that a better dispersion of carbon nanotubes dramatically enhanced the speed of imidization. Moreover, the DSC results showed that lower decomposition temperature of poly(amic acid) could be obtained with more uniform distribution of carbon nanotubes, which means the process of cyclodehydration of the poly(amic acid) was accelerated.  相似文献   

8.
Single-wall carbon nanotubes (SWNT) prepared by the "super growth" method developed recently exhibit electron paramagnetic resonance (EPR) signals, which can be attributed to itinerant spins. EPR results indicate very low defect and catalyst concentrations in this superior material. Under these conditions EPR can be used to study details of charge transport properties over a wide temperature range, although the material is still very "heterogeneous" with respect to tube diameter and chirality. Non-resonant microwave absorption in the temperature range below 20 K is indicative for the opening of a small gap at the Fermi energy for tubes of metallic character, which is indicative for a transition into a superconducting state. Using SWNT filled partially with an endohedral spin probe like N@C(60), such "peapods" can be investigated "from the inside". Continuous-wave (cw) and pulsed EPR was used to investigate localization dynamics within the tubes or to check for interaction with itinerant electrons. Using SWNT grown by different methods, the dominant influence of tube diameter on fullerene dynamics was revealed by temperature dependent pulsed EPR experiments. These differences can be correlated with the interactions between the endohedral observer spin and spins on the SWNT.  相似文献   

9.
A two-stage reaction process was used to convert polypropylene (PP) into multi-walled carbon nanotubes (MWCNTs) and hydrogen-rich gas. The proposed process consisted of two stages: catalytic pyrolysis of PP over HZSM-5 zeolite in a screw kiln reactor and the subsequent catalytic decomposition of pyrolysis gases over a nickel catalysts in a moving-bed reactor for producing MWCNTs and hydrogen. The resultant gas mainly consisted of hydrogen and methane. SEM and TEM images revealed that carbon products in the moving-bed reactor were in the form of MWCNTs. XRD and TGA characterization indicated that high decomposition temperature resulted in the formation of more highly crystalline nanotubes. The influence of pyrolysis temperature (550-750 °C) and decomposition temperature (500-800 °C) on the performances of the two-stage reaction system were investigated. The MWCNT yield and hydrogen concentration increased with an increase in the decomposition temperature and reached a maximum at 700 °C. With increasing pyrolysis temperature the yield of pyrolysis gas increased while the liquid yield decreased. The yield of MWCNTs in the moving-bed reactor was determined by both the quantity and quality of the pyrolysis gas.  相似文献   

10.
An anion substitution route was utilized for lowering the dielectric loss in CaCu3Ti4O12 (CCTO) by partial replacement of oxygen by fluorine. This substitution reduced the dielectric loss, and retained a high dielectric constant that was essentially temperature independent from 25 to 200 °C. In particular, CaCu3Ti4O11.7F0.3 exhibited a giant dielectric constant over 6000 and low dielectric loss below 0.075 at 100 kHz within a temperature range of 25-200 °C. Fluorine analysis confirmed the presence of fluorine in all samples measured.  相似文献   

11.
Multiwall carbon nanotubes (MWNT)/linear low density polyethylene (LLDPE) nanocomposites were studied in order to understand the stabilisation mechanism for their thermal and oxidative degradation. Thermogravimetry coupled with infrared evolved gas analysis and pyrolysis gas chromatography-mass spectrometry demonstrate that MWNT presence slightly delays thermal volatilisation (15-20 °C) without modification of thermal degradation mechanism. Whereas thermal oxidative degradation in air is delayed by about 100 °C independently from MWNT concentration in the range used here (0.5-3.0 wt.%). The stabilisation is due to formation of a thin protective film of MWNT/carbon char composite generated on the surface of the nanocomposites is shown by SEM and ATR FTIR of degradation residues. The film formation mechanism is discussed.  相似文献   

12.
Covalent sidewall functionalization of single wall carbon nanotubes   总被引:6,自引:0,他引:6  
Alkyllithium reagents may be used to attach alkyl groups to the sidewalls of fluoro nanotubes. Thermal gravimetric analysis combined with UV-vis-Nir spectroscopy has been used to provide a quantitative measure of the degree of functionalization. SWNTs prepared using the HiPco process exhibit a higher degree of alkylation than SWNTs from the laser-oven method, indicating that the smaller diameter fluoro tubes are alkylated more readily. The spectral signature of the pristine SWNTs can be regenerated when the alkylated SWNTs are heated in Ar at 500 degrees C, demonstrating that dealkylation occurs at this temperature. TGA-MS analysis using a sample of n-butylated h-SWNTs showed that 1-butene and n-butane are formed during thermolysis.  相似文献   

13.
Single-walled carbon nanotubes (SWNT) were reported to have record high hydrogen storage capacities at room temperature, indicating an interaction between hydrogen and carbon matrix that is stronger than known before. Here we present a study of the interaction of hydrogen with activated charcoal, carbon nanofibers, and SWNT that disproves these earlier reports. The hydrogen storage capacity of these materials correlates with the surface area of the material, the activated charcoal having the largest. The SWNT appear to have a relatively low accessible surface area due to bundling of the tubes; the hydrogen does not enter the voids between the tubes in the bundles. Pressure-temperature curves were used to estimate the interaction potential, which was found to be 580+/-60 K. Hydrogen gas was adsorbed in amounts up to 2 wt % only at low temperatures. Molecular rotations observed with neutron scattering indicate that molecular hydrogen is present, and no significant difference was found between the hydrogen molecules adsorbed in the different investigated materials. Results from density functional calculations show molecular hydrogen bonding to an aromatic C[bond]C that is present in the materials investigated. The claims of high storage capacities of SWNT related to their characteristic morphology are unjustified.  相似文献   

14.
Carbon nanotubes of high helicity (H-HCNTs, Sample A) have been synthesized in large-scale by pyrolysis of acetylene at 450 °C over Fe nanoparticles derived from coprecipitation/hydrogen reduction method. With controlled introduction of hydrogen during acetylene pyrolysis, CNTs of low helicity (L-HCNTs, Sample B) and worm-like CNTs (Sample C) were obtained in large quantities. The yields of the CNTs products are high, especially that of H-HCNTs (ca. 7474%). The complex permittivity and permeability of Composites A, B, and C that contain Samples A, B and C (30 wt%) were measured in the 2-18 GHz frequency range. Good absorption of electromagnetic wave (reflection loss<−20 dB) was observed in the 7.18-10.68 and 7.5-10.7 GHz range over Composites B and C (2.0-3.0 mm thickness), respectively. Thus, through the suggested route, CNTs can be produced easily and selectively in large quantities. The lightweight materials can be utilized for microwave absorption.  相似文献   

15.
Nanoscale defects in the outer tube to preserve the electrical and optical features of the inner tube can be engineered to exploit the intrinsic properties of double walled carbon nanotubes (DWCNTs) for various promising applications. We demonstrated a selective way to make defects in the outer tube by the fluorination of DWCNTs followed by the thermal detachment of the F atoms at 1000 °C in argon. Fluorinated DWCNTs with different amounts of F atoms were prepared by reacting with fluorine gas at 25, 200, and 400 °C that gave the stoichiometry of CF0.20, CF0.30, and CF0.43, respectively. At the three different temperatures used, we observed preservation of the coaxial morphology in the fluorinated DWCNTs. For the DWCNTs fluorinated at 25 and 200 °C, the strong radial breathing modes (RBMs) of the inner tube and weakened RBMs of the outer tube indicated selective fluorine attachment onto the outer tube. However, the disappearance of the RBMs in the Raman spectrum of the DWCNTs fluorinated at 400 °C showed the introduction of F atoms onto both inner and outer tubes. There was no significant change in the morphology and optical properties when the DWCNTs fluorinated at 25 and 200 °C were thermally treated at 1000 °C in argon. However, in the case of the DWCNTs fluorinated at 400 °C, the recovery of strong RBMs from the inner tube and weakened RBMs from the outer tube indicated the selective introduction of substantial defects on the outer tube while preserving the original tubular shape. The thermal detachment of F atoms from fluorinated DWCNTs is an efficient way to make highly defective outer tubes for preserving the electrical conduction and optical activity of the inner tubes.  相似文献   

16.
The structural and optical properties of technologically interesting pyrolytic carbons formed from cured novolac resin and cured novolac/biomass composites were studied by X-Ray Diffraction Analysis (XRD), and Fourier Transform Infrared (FTIR), Raman and Photoluminescence (PL) spectroscopy. Pyrolysis of the cured materials took place at temperatures in the range 400–1000 °C. The most important weight loss, shrinkage and structural changes of pyrolyzed composites are observed at temperatures up to 600 °C due to the olive stone component. In the same temperature range, the changes in pyrolyzed novolac are smaller. The spectroscopic analysis shows that novolac pyrolyzed up to 900 °C has less defects and disorder than the composites. However, above 900 °C, pyrolyzed novolac becomes more disordered compared to the pyrolyzed composites. It is concluded that partial replacement of novolac by olive stone in the composite materials leads to the formation of a low cost, good quality product.  相似文献   

17.
The structural properties of vanadium doped aluminium oxyfluorides and aluminium oxides, prepared by a modified sol-gel synthesis route, were thoroughly investigated. The influence of the preparation technique and the calcination temperature on the coordination of vanadium, aluminium and fluorine was analysed by different spectroscopic methods such as Raman, MAS NMR and ESR spectroscopy. In all samples calcined at low temperatures (350 °C), vanadium coexists in two oxidation states VIV and VV, with VIV as dominating species in the vanadium doped aluminium oxyfluorides. In the fluoride containing solids aluminium as well as vanadium are coordinated by fluorine and oxygen. Thermal annealing of 800 °C leads to an extensive reorganisation of the original matrices and to the oxidation of VIV to VV in both systems.  相似文献   

18.
Single wall carbon nanotubes (SWNT) are model systems for the study of electronic transport in one-dimensional conductors. They are expected to exhibit strong electronic correlations and non-Fermi liquid behavior as suggested by recent experiments. The possibility to induce supercurrents through such molecular wires is a challenging question both for experimentalists and theoreticians. In this paper we show experimental evidence of induced superconductivity in a SWNT. This proximity effect is observed in a single 1 nm diameter SWNT, in individual cristalline ropes containing about 100 nanotubes and also on multiwalled tubes. These samples are suspended as strings between two superconducting electrodes (double layer Au-Re, Au-Ta or Sn film) at a distance varying between 100 and 2 000 nm. This allows their structural study in a transmission electron microscope. When their resistance is low enough, SWNT become superconducting with surprisingly high critical currents (in the micro-Ampere range for a single tube of normal state resistance 25 kΩ). This critical current, extensively studied as function of temperature and magnetic field, exhibits unusual features which are not observed in conventional Superconducting-Normal-Superconducting junctions and can be related to the strong 1D character of these samples. We also show evidence of a huge sensitivity of dc transport properties of the tubes to electromagnetic radiation in the radio-frequency range.  相似文献   

19.
Graphite fluoride is classified into (C2F)n and (CF)n types from the structure and composition. Both compounds have such unique physicochemical properties as low surface energy, solid lubricating characteristics, and oxidizing ability. However, a long reaction time is required to completely fluorinate graphite and moreover, the decomposition reaction of the product causes the lowering of the yields.In this paper, the effect of the pretreatments of the starting material on the fluorination will be reported on the following methods.1) Fluorination of Exfoliated Graphite Obtained by Heat-treatment of Graphite Lamellar Compound.The exfoliated graphite was obtained by the immersion of graphite into the mixed solution of sulfuric acid and hydrogen peroxide and subsequent heat-treatment. It has both much large surface area and larger lattice strain than that of the original graphite.The exfoliated graphite was much faster fluorinated than the original graphite. The dissociation of fluorine molecules to atoms was found to be a rate-determining step in the formation of graphite fluoride from the exfoliated graphite, whereas the process of diffusion of fluorine molecules was the rate-determining step in the fluorination of the original graphite.2) Fluorination of Residual Carbon Formed upon Pyrolysis of Graphite Fluoride.Graphite fluoride decomposes to carbon and some perfluorocarbons of low molecular weight at high temperature above 600 °C. The residual carbon was amorphous in analogy with petroleum coke or carbon black, but had smaller interlayer spacing and larger specific surface area due to its microporous structure than these amorphous carbonsThe rate of the direct fluorination of residual carbon at a room temperature was comparable to that of active carbon, and the graphite fluoride obtained from the residual carbon has a similar high thermostability to that of graphite fluoride obtained from graphite at a high temperature under an atmosphere of fluorine gas. Upon direct fluorination of the residual carbon a more crystalline graphite fluoride was obtained even at a low temperature than the case of petroleum coke and carbon black. It is interesting that the fluorination of the residual carbon leads to the formation of crystalline graphite fluoride in high yield.  相似文献   

20.
We have obtained unique highly carbonized polyaniline micro- and nanotubes as a new, thermally stable nanomaterial for nanosensors and nanodevices with a wide range of possible applications, comparable to carbon nanotubes. Polyaniline nanostructures are easy to prepare and handle in wet conditions, including controlled growth. Temperature-induced transformations of polyaniline micro- and nanotubes into highly carbonized analogues have been observed at and above 800 °C, while the temperature was elevated slowly from 20 °C up to 1100 °C. Carbonized products have the same morphology (micro- and nanotubes), but a lower spin density than the starting material (e.g. 1014 g−1 for the sample heated at and above 800 °C, and 1019 g−1 before heating). Simultaneously, the electrical conductivity changes from 7.4 × 10−5 S/cm for the starting material to 4.8 × 10−9 S/cm, 1.3 × 10−11 S/cm and finally 2.4 × 10−6 S/cm for samples obtained at room temperature, 250 °C, 500 °C and 800 °C, respectively. Chemical transformations and unique molecular structures formed are discussed. Applications in nanotechnology, including sensors and electronic nanodevices, are expected in the light of experiments already performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号