首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Silver–polypyrrole (PPy) core–shell nanoparticles have been fabricated by a facile one-step “green” synthesis using silver nitrate as an oxidant and soluble starch as an environmentally benign stabilizer and co-reducing agent. The morphology and optical properties of the particles were significantly affected by the reaction temperature, soluble starch concentration, and ratio of pyrrole monomer to AgNO3 oxidant. The core–shell nanoparticles exhibited outstanding dispersive properties in deionized water due to residual starch, as compared with PPy nanoparticles in which starch was absent. The mechanism of core–shell nanoparticle formation was elucidated through TEM imaging vs. reaction time. The colloidal and chemical stability of the nanoparticles was demonstrated in a variety of solvents, including acids, bases, and ionic and organic solvents, through monitoring the localized surface plasmon resonance of the nanoparticles. Furthermore, the catalytic properties of these silver–PPy core–shell nanoparticles were also demonstrated.
Figure
Schematic illustration of silver-PPy core-shell nanoparticle formation and methylene blue (MB) reduction using the core-shell nanoparticles as a catalyst.  相似文献   

3.
A bulk liquid membrane system has been developed and applied to the simultaneous separation and preconcentration of up to seven heavy metals (copper, zinc, lead, cadmium, aluminium, manganese, and nickel) in seawater. Copper was selected to optimize transport conditions and then, under these conditions, the simultaneous extraction of other heavy metals was studied. The system achieved preconcentration yields ranging between 44.11% (Cd) and 77.77% (Cu) after nine hours of operation, the effectiveness of metal transport being Cu > Zn > Pb > Mn > Ni > Al > Cd. The system was applied to the preconcentration of four real seawater samples before their quantification by inductively coupled plasma–mass spectrometry (ICP–MS). Compared with the analytical procedures commonly used for trace metal determination in oceanography, the results obtained demonstrated that the new system may be used as a very clean (sample contamination-free), simple, and one-step alternative for semiquantitative, and even quantitative, simultaneous determination of heavy metals in seawater.  相似文献   

4.
《Solid State Sciences》2012,14(3):317-323
Three transition metal coordination polymers [Zn2(H2L)(2,2′-bpy)2(H2O)]n∙2nH2O (1), [Zn2(H2L)(2,2′-bpy)2]n (2), and [Cd2(H2L)(2,2′- bpy)2(H2O)2]n∙2nH2O (3), have been assembled from a semirigid triangular multicarboxylate ligand 3,3′,3″-(1,3,5-phenylenetri(oxy))triphthalic acid (H6L) with the help of 2,2′-bipyridine (2,2′-bpy) ligand. X-ray single crystal diffraction analysis reveals that complex 1 crystallizes in the space group of Pī and displays a one-dimensional (1D) ladder chain structure constructed from 2,2′-bpy ligand and H2L ligand, which stacks together in an -ABCABC- motif, featuring a mutually embedded chained structure. In complex 2, the H2L ligands bridge the adjacent Zn(II) atoms into a complicated ribbon chain along the b axis. There is π–π stacking interaction between the chains, which results in the formation of a 2D supramolecular structure. Complex 3 also exhibits a 1D ladder-like chain. The different molecular structures for complexes 1 and 2 formed from the same H6L and Zn(NO3)2∙6H2O in different metal-to-ligand ratios in the presence of NaOH, reveals the influence of metal–ligand ratio on the structure of the coordination polymer. In contrast, a series of same reaction using Cd(NO3)2∙4H2O as a starting material instead of Zn(NO3)2∙6H2O only led to the formation of 3, illustrating the fact organic ligands display different coordination preferences at different metal ions. In addition, the thermal and luminescent properties of complexes 13 were also investigated.  相似文献   

5.
Research on Chemical Intermediates - The unique characteristics of metal–organic frameworks such as structural tunability, high surface area, low density, and tailored porosity have made this...  相似文献   

6.
Under hydrothermal conditions, in the presence of H2BDC, the self-assembly of CdCl2, H2ip or H2NDC at pH = 7 generated two Cd(II)-containing coordination polymers, Cd6(ip)6(μ-H2O)4·H2O (1) and Cd2(NDC)2(μ-H2O)2 (2) (H2BDC/H2ip/H2NDC = 1,4/1,3/1,2-benzenedicarboxylic acid). The structures are 2D metal-organic frameworks constructed from Cd-O-C rod-shaped SBUs (Secondary Building Units). Crystal samples in the solid state display strong fluorescence at 335 and 343 nm.  相似文献   

7.
采用溶胶-凝胶结合水热结晶技术,可成功把高聚物引入MS-SiO2网络结构,合成一种新型的有机-无机硫化物即Polymer/MS/SiO2(M=Pb,Cd)复合纳米材料,其中聚甲基丙烯酸甲酯或聚丙烯酰胺等高聚物的引入将有效地防止无机粒子团聚,控制粒子尺寸,前者还能形成核-壳结构复合粒子.作者还详细讨论了该复合纳米材料的热分析,结果表明,聚合物的存在提高了原有MS-SiO2(M=Pb,Cd)材料的热稳定性.  相似文献   

8.
Following previous works [1, 2], silica–polystyrene core–shell particles have been synthesized by dispersion polymerization of styrene in an ethanol/water mixture in the presence of a poly(styrene-b-ethylene oxide) block copolymer as stabilizer. Besides the formation of composite core–shell particles, a large number of free latex particles that do not contain silica were also formed. This number decreases as the size of the silica beads decreases from 300 to 29 nm in diameter, and becomes very low compared to the number of composite particles for the smallest silica beads used. In every case, the composite particles could be easily separated from the free latex particles by centrifugation, providing a material made of regular core–shell composite particles. On the basis of the mechanisms involved in dispersion polymerization, hypotheses were formulated to account for the formation of the silica–polystyrene composite particles. Received: 6 May 1999 Accepted in revised form: 29 June 1999  相似文献   

9.
Radionuclides with long half-life are toxic,and thereby result in serious threat to human beings and ecological balance.Herein,a simple two-step synthesis method was used to prepare manganese dioxide@polypyrrole(Mn O_2@PPy)core/shell structures for efficient removal of U(Ⅵ)and Eu(Ⅲ)from aqueous solutions.The adsorption of U(Ⅵ)and Eu(Ⅲ)were investigated under different kinds of experimental conditions.The experimental results suggested that the adsorption of U(Ⅵ)and Eu(Ⅲ)on Mn O_2@PPy were greatly affected by p H.U(Ⅵ)adsorption on Mn O_2@PPy was independent of ionic strength at p H6.0,and dependent on ionic strength at p H6.0.However,Eu(Ⅲ)adsorption on Mn O_2@PPy was independent of ionic strength at the whole p H range of experimental conditions.The maximum adsorption capacities(q_(max))of U(Ⅵ)and Eu(Ⅲ)were 63.04 and54.74 mg g~(-1)at T=298 K,respectively.The BET,XRD,FTIR and XPS analysis evidenced that high adsorption capacities of U(Ⅵ)and Eu(Ⅲ)on Mn O_2@PPy were mainly due to high surface area and rich metal oxygen-containing group(i.e.,Mn–OH and Mn–O),and the interaction was mainly attributed to strong surface complexation and electrostatic interaction.This study highlighted the excellent adsorption performance of U(Ⅵ)and Eu(Ⅲ)on Mn O_2@PPy and could provide the reference for the elimination of radionuclides in real wastewater management.  相似文献   

10.
Research on Chemical Intermediates - This paper presents the sonochemical synthesis of a new hetero-metallic inorganic complex, formulated as [(Sr(OH2)5Ce(dipic)3Sr(OH2)6][Ce(dipic)3]·6H2O...  相似文献   

11.
Photoluminiscent (PL) cellulose aerogels of variable shape containing homogeneously dispersed and surface-immobilized alloyed (ZnS)x(CuInS2)1?x/ZnS (core/shell) quantum dots (QD) have been obtained by (1) dissolution of hardwood prehydrolysis kraft pulp in the ionic liquid 1-hexyl-3-methyl-1H-imidazolium chloride, (2) addition of a homogenous dispersion of quantum dots in the same solvent, (3) molding, (4) coagulation of cellulose using ethanol as antisolvent, and (5) scCO2 drying of the resulting composite aerogels. Both compatibilization with the cellulose solvent and covalent attachment of the quantum dots onto the cellulose surface was achieved through replacement of 1-mercaptododecyl ligands typically used in synthesis of (ZnS)x(CuInS2)1?x/ZnS (core–shell) QDs by 1-mercapto-3-(trimethoxysilyl)-propyl ligands. The obtained cellulose—quantum dot hybrid aerogels have apparent densities of 37.9–57.2 mg cm?3. Their BET surface areas range from 296 to 686 m2 g?1 comparable with non-luminiscent cellulose aerogels obtained via the NMMO, TBAF/DMSO or Ca(SCN)2 route. Depending mainly on the ratio of QD core constituents and to a minor extent on the cellulose/QD ratio, the emission wavelength of the novel aerogels can be controlled within a wide range of the visible light spectrum. Whereas higher QD contents lead to bathochromic PL shifts, hypsochromism is observed when increasing the amount of cellulose at constant QD content. Reinforcement of the cellulose aerogels and hence significantly reduced shrinkage during scCO2 drying is a beneficial side effect when using α-mercapto-ω-(trialkoxysilyl) alkyl ligands for QD capping and covalent QD immobilization onto the cellulose surface.  相似文献   

12.
The infrared spectra of the title compounds have been reported. The spectral data suggest that the host framework of these compounds are similar to those of the en-Td-type clathrate compounds. There is good evidence for hydrogen bonding from ligand molecules to benzene molecules as a to hydrogen bond.  相似文献   

13.
In this paper, we report on measurements of K shell, L shell–subshell and M shell–subshell photoeffect cross-sections for 21 high-atomic-number elements between Tb (Z=65) and U (Z=92) at 123.6 keV. These photoeffect cross-sections have been measured by using our earlier measurements of the K-shell X-ray production cross-sections. The measured photoeffect cross-sections have been compared with calculated theoretical values. It is clear that the results compare well with theoretical values within an experimental average error. At 123.6 keV, these cross-sections have been measured for the first time. The results have been plotted versus atomic number.  相似文献   

14.
Core–shell silica (SiO2) coated CdS nanorods (NR) and nanospheres (NS) were prepared (SiO2@CdS) by deposition of a Si–O–Si amorphous layer over the CdS surface through the hydrolysis of 3-mercaptopropyltrimethoxysilane and tetraethylorthosilicate. Nanoporous SiO2 matrix (NPSM), hollow SiO2 nanotubes (HSNT) and nanospheres (HSNS) useful for efficient adsorption and catalytic processes were prepared by chemical dissolution of CdS–NS (size: 9–10 nm) and CdS–NR (length: 116–128 nm and width: 6–11 nm) template from SiO2@CdS with 2 M HNO3. These SiO2 nanostructures were characterized by optical absorption, TEM, EDX, SAED and BET surface area analysis. TEM images revealed the fabrication of slightly distorted HSNS (size: 9–12 nm) and closed HSNT (length: 30–45 nm and diameter: 9–14 nm) of shorter dimensions than the CdS–NR template used. The BET surface area (112–134 m2 g?1) of NPSM and HSNS is found to be larger than the surface area (29–51 m2 g?1) of SiO2@CdS composites indicating hollow SiO2 morphology. Silica coated Au (SiO2@Au) composites formed by CdS dissolution from Au (2 wt%) deposited CdS–NR core-encapsulated into SiO2 shell (SiO2@Au–CdS–NR) exhibited a surface plasmon band at 550 nm and displayed high catalytic activity for 4-nitrophenol reduction by Au nanoparticle.  相似文献   

15.

Nano-sized M0.05Eu0.05Ca0.9MoO4 (M=Li, Na, K, Rb, Cs) ceramics have been successfully synthesized by an aqueous sol–gel synthesis method using a tartaric acid as a ligand. In order to reveal the influence of the peculiarities of the nature of dopants effect into the crystallization of CaMoO4 double oxide, the thermal analysis of the as-prepared gels was performed. In addition, infrared spectroscopy was used in order to identify the functional groups from the characteristic stretching vibrations in the M–Eu–Ca–Mo–O tartrate gel precursors. Besides, to confirm the dynamics of growing crystallites in the final ceramics and to reveal the morphological changes on the surface, the x-ray diffraction and scanning electron microscopy were applied. Finally, photoluminescence measurements were used to estimate the optical properties of europium oxide as a dopant in the samples according to the nature of alkali metal. Therefore, according to the obtained results, it was estimated that luminescence intensity of Eu3+ ions is mainly affected by the chemical reaction, which takes place at about 973 K of temperature. This effect was partly confirmed from the results of the thermal decomposition of M–Eu–Ca–Mo–O tartrate gel precursors with an endothermic behaviour in the DSC curve, which indicates the crystallization mechanism of the CaMoO4 double oxide.

  相似文献   

16.
 Core–shell latex particles made of a poly(butyl methacrylate) (PBMA) core and a thin polypyrrole (PPy) shell were synthesized by two-stage polymerization. In the first stage, PBMA latex particles were synthesized in a semicontinuous process by free-radical polymerization. PBMA latex particles were labeled either with an energy donor or with an energy acceptor, in two different syntheses. These particles were used in a second stage as seeds for the synthesis of the core–shell particles. The PPy shell was polymerized around the PBMA core latex in an oxidative chemical in situ polymerization. Proofs for the success of the core–shell synthesis were obtained using nonradiative energy transfer (NRET) and atomic force microscopy (AFM). NRET gives access to the rate of polymer chain migration between adjacent particles in a film annealed at a temperature above the glass-transition temperature T g of the particles. Slower chain migration of the PBMA polymer chains was obtained with the PBMA–PPy core–shell particles compared to rate of the PBMA polymer chain migration found with the pure, uncoated PBMA particles. This result is due to the coating of PBMA by PPy, which hinders the migration of the PBMA polymer chains between adjacent particles in the film. This observation has been confirmed by AFM measurements showing that the flattening of the latex film surface is much slower for the core–shell particles than for the pure PBMA particles. This result can again be explained by the presence of a rigid PPy shell around the PBMA core. Thus, these two complementary methods have given evidence that real core–shell particles were synthesized and that the shell seriously hinders film formation of the particles in spite of the fact that it is very thin (thickness close to 1 nm) compared to the size (750 and 780 nm in diameter) of the PBMA core. Transparency measurements confirm the results obtained by NRET and AFM. When the films are placed at a temperature higher than the T g of PBMA, the increase in transparency is faster for films made with the uncoated PBMA particles than for films made with the coated PBMA particles. This result indicates again that the presence of the rigid PPy layer around the PBMA core reduces considerably the speed at which the structure of the film is modified when heated above the T g of PBMA. Received: 02 September 1999 Accepted: 21 December 1999  相似文献   

17.
Hydro- and solvo-thermal reactions of d-block metal ions (Mn(2+), Co(2+), Zn(2+) and Cd(2+)) with monosodium 2-sulfoterephthalate (NaH(2)stp) form six 3D coordination polymers featuring cluster core [M(4)(μ(3)-OH)(2)](6+) in common: [M(2)(μ(3)-OH)(stp)(H(2)O)] (M = Co (1), Mn (2) and Zn (3)), [Zn(2)(μ(3)-OH)(stp)(H(2)O)(2)] (4), [Zn(4)(μ(3)-OH)(2)(stp)(2)(bpy)(2)(H(2)O)]·3.5H(2)O (5) and [Cd(2)(μ(3)-OH)(stp) (bpp)(2)]·H(2)O (6) (stp = 2-sulfoterephthalate, bpy = 4,4'-bipyridine and bpp = 1,3-di(4-pyridyl)propane). All these coordination polymers were characterized by single crystal X-ray diffraction, IR spectroscopy, thermogravimetric and elemental analysis. Complexes 1-3 are isostructural coordination polymers with 3D frameworks based on the chair-like [Zn(4)(μ(3)-OH)(2)](6+) core and the quintuple helixes. In complex 4, there exist double helixes in the 3D framework based on the chair-like cluster cores. Complex 5 possesses a 2-fold interpenetration structure constructed from boat-like cluster core and the bridging ligands stp and bpy. For complex 6, the chair-like cluster cores and stp ligands form a 2D (4,4) network which is further pillared by bpp linkers to a 3D architecture. Magnetic studies indicate that complex 1 exhibits magnetic ordering below 4.9 K with spin canting, and complex 2 shows weak antiferromagnetic coupling between the Mn(II) ions with g = 2.02, J(wb) = -2.88 cm(-1), J(bb) = -0.37 cm(-1). The fluorescence studies show that the emissions of complexes 3-6 are attributed to the ligand π-π* transition.  相似文献   

18.
IR spectra of Mn(dl-propylenediamine)M(CN)4.nC6H6 (M = Zn, n = 1.25; M = Cd, n = 1.00 or M = Hg, n = 1.18), and IR and Raman spectra of Cd(dl-propylenediamine)M(CN) 4. 1.5C6H6 (M = Cd or Hg) are reported. The spectral data suggest that the former three compounds are similar in structure to the latter two pn-Td-type clathrates.  相似文献   

19.
In this work, the ab-initio coupled cluster CCSD(T) method and the B3LYP, BP91W and CAM-B3LYP functional of DFT method in conjunction with the aug-cc-pVTZ-PP basis have been applied to study the group 12 monocarbides MC, MC+ and MC?. The potential energy curves (PECs) for the three electronic states 3Σ?, 5Σ? and 1Δ of the MC and the two states 2- and 4- for the MC+ cations and MC? anions have been investigated. In addition, Bond distance Re, transition energy Te, vibrational frequency ωe, ionization energy IE, electron affinity EA, dipole moment μ, dissociation energy D0 and heat formation ΔH°f0/ΔH°f298, were determined for each species. The analysis of the dissociation energy for ZnC, CdC and HgC shows the decrease in the stability of the monocarbides from Zn to Hg. For ΔH°f0/ΔH°f298 values of MC, which are not known experimentally or theoretically, we recommend the following CCSD(T) predictions of ZnC, CdC and HgC: 181.3/178.54, 180.65/178.4 and 175.35/174.71 kcal/mol respectively. Comparing the three functionals with the CCSD(T) results, the CAM-B3LYP functional shows excellent predictive agreement for the various properties of the group 12 monocarbides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号