首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-density polyethylene (HDPE) containing various volume fractions (0–20 vol%) of aluminum nitride nanoparticles (n-AlN) is prepared by melt mixing. Structural and morphological characterizations of the prepared composites are carried out by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), and atomic force microscopy (AFM). Thermal stability and degradation kinetics of HDPE/AlN (nano) composites are investigated by Thermogravimetric analysis (TG). HR-TEM micrographs confirm fairly uniform dispersion of AlN nanoparticles, as well as the existence of long interconnected chain-like aggregates. AFM images also confirm homogeneous dispersion of n-AlN in the polymer matrix. Roughness analysis from the AFM data indicates the presence of substantial undulation from the mean surface level. Thermogravimetric data indicate small improvement in the thermal stability of the composites. Kinetic parameters, viz., the activation energy (E a), frequency factor (A), and reaction order (n) are estimated using the isoconversional methods of Kissinger, Flynn–Wall–Ozawa (FWO), KAS, and Friedman. Activation energies (E a) calculated by the above four models display nearly similar features and are enhanced by the presence of AlN nanoparticles. Kinetics of degradation of HDPE-AlN (nano) composites follows a first-order reaction.  相似文献   

2.
The heat of reaction and kinetics of curing of diglycidyl ether of bisphenol-A (DGEBA) type of epoxy resin with catalytic amounts of ethylmethylimidazole (EMI) have been studied by differential power-compensated calorimetry as a part of the program for the study of process monitoring for composite materials. The results were compared with those from 1∶1 and 1∶2 molar mixtures of DGEBA and EMI. A method of determination of heat of reaction from dynamic thermoanalytical instruments was given according to basic thermodynamic principles. The complicated mechanism, possibly involving initial ionic formation, has also been observed in other measurements, such as by time-domain dielectric spectroscopy. The behavior of commercially available DGEBA resin versus purified monomeric DGEBA were compared. The melting point of purified monomeric DGEBA crystals is 41.4 °C with a heat of fusion of 81 J/g. The melt of DGEBA is difficult to crystallize upon cooling. The glass transition of purified DGEBA monomer occurs around ?22 °C with aΔC p of 0.60 J/K/g.  相似文献   

3.
Indomethacin-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles with an average diameter of 100 nm were prepared by using a combination of an antisolvent diffusion method with preferential solvation (bare nanoparticles). Polyvinyl alcohol (PVA)-coated indomethacin-loaded PLGA nanoparticles with an average diameter of 100 nm were also prepared by emulsification and the solvent evaporation method (PVA-coated nanoparticles). Bare nanoparticles do not have a hydrophilic stabilizer on the surface; therefore, they have high hydrophobicity and negative charges. Electrophoretic mobility of bare nanoparticles at 5 mM NaCl solution was about 68 times higher than that of PVA-coated nanoparticles. Permeability of bare nanoparticles through rat skin was significantly higher than that of PVA-coated nanoparticles when iontophoresis was applied ex vivo. Indomethacin amount inside the skin after the permeation study by using bare nanoparticles was much higher than that by using PVA-coated nanoparticles. Indomethacin transition to circulation and accumulation in muscle by the transdermal delivery of indomethacin-loaded PLGA nanoparticles were significantly enhanced by using the combination of bare nanoparticles and iontophoresis in vivo. As for transdermal route of nanoparticles, both bare and PVA-coated nanoparticles were revealed to penetrate through the transfollicular pathway, and the migration of nanoparticles to follicles was enhanced by the application of iontophoresis. PLGA nanoparticles prepared by the antisolvent diffusion with preferential solvation are beneficial for iontophoretic transdermal delivery of therapeutic agents.  相似文献   

4.
5.
More than 13 years of SIMS application field experience of numerous users of the ATOMIKA Ionmicroprobes have been the basis for the new SIMS Data System SDS 800. The hardware and software concept of the SDS 800, therefore, pays special attention to the following requirements:
  1. Convenient set-up, modification and re-use of the measuring parameter sets for easy, time-saving operation.
  2. Individual parameter selection from the very broad range of SIMS measuring parameters for optimum SIMS data quality.
  3. Multitasking operation for simultaneous handling of SIMS measurement, data processing, data output and of auxiliary techniques.
  4. Simultaneous depth profile/ion image acquisition and processing to enhance data quality and to validate data interpretation.
  5. User-friendly data processing and output.
  相似文献   

6.
Major processing factors in forming Fe2SiO4/SiO2 and Fe2O3/SiO2 powders via sol–gel synthesis followed by solid-state reactions are investigated. The results clearly indicate that the chemical compositions of the precursors, the ratio of the precursors, the nature of the catalyst used, and the gas atmosphere during solid-state reactions can all affect the outcome of the reaction product(s). The formation of Fe2SiO4/SiO2 is enhanced by using the precursor iron(III) acetylacetonate as the Fe source with the precursor ratio of iron(III) acetylacetonate to tetraethyl orthosilicate being 1:1 and the addition of formic acid. Otherwise, crystalline Fe and Fe3C are formed in place of Fe2SiO4. By altering the gas atmosphere during solid-state reactions from argon to oxygen, the reaction products change from Fe2SiO4/SiO2 to Fe2O3/SiO2. All of the observed phenomena can be rationalized via the degree of mixing of the Fe–O and Si–O domains at the molecular level in the gel network during sol–gel reactions and the presence of a reducing or oxidizing atmosphere during the solid-state reaction.  相似文献   

7.
The extraction of hydrochloric acid by trilaurylamine (TLA) dissolved in benzene was studied in the presence and in absence of n-octanol. The extraction of HCl was found to be enhanced by the addition of octanoi to the organic phase. In order to explain this effect by means of the law of mass action, the systems TLA-HCL-benzene and n-octanol-HCl-benzene as well as TLA-octanol-benzene were also studied. It was found that TLA reacts with octanol to form a complex, TLAROH, while the octanol itself associates in benzene to form dimers and tetramers, although it does not extract HCl alone from the dilute solutions used in the present study. The enhancement of the extraction of HCl by TLA upon the addition of n-octanol could be described by the formation of the species TLA·ROH·HCl and its stability constant was determined.  相似文献   

8.
Monitoring of intracellular redox status in a bacterial cell provides vital information about the physiological status of the cell, which can be exploited in several applications such as metabolic engineering and computational modeling. Fluorescent protein-based genetically encoded sensors can be used to monitor intracellular oxidation/reduction status. This study reports the development of a redox sensor for intracellular measurements using fluorescent protein pairs and the phenomenon of Förster resonance energy transfer (FRET). For the development of the sensor, fluorescent proteins Citrine and Cerulean were genetically modified to carry reactive cysteine residues on the protein surface close to the chromophore and a constructed FRET pair was fused using a biotinylation domain as a linker. In oxidized state, the FRET pairs are in close proximity by labile disulfide bond formation resulting in higher FRET efficiency. In reducing environment, the FRET is diminished due to the increased distance between FRET pairs providing large dynamic measurement range to the sensor. Intracellular studies in Escherichia coli mutants revealed the capability of the sensor in detecting real-time redox variations at single cell level. The results were validated by intensity based and time resolved measurements. The functional immobilization of the fluorescent protein-based FRET sensor at solid surfaces for in vitro applications was also demonstrated. Graphical Abstract
Schematic representation of FRET-based redox sensor  相似文献   

9.
An enzyme immunosensor has been developed for assaying human immunoglobulin G (IgG). The sensor is composed of an oxygen sensoring system and an antibody-binding membrane. The assay procedure involves the competitive immunochemical reaction of the membrane-bound antibody with nonlabeled and catalase-labeled IgG and the electrochemical determination of membrane-bound catalase activity. The analytical result is directly displayed by the output current of the sensor. The sensor exhibited an excellent performance in monitoring specifically human IgG.  相似文献   

10.
Highly purified transferrin mRNA characterized by electrophoretic and sedimentational homogeneity has been obtained from rat liver, with a sedimentation coefficient of 20S and a molecular weight of 0.86 MD. In a system consisting of a lysate of rabbit reticulocytes the Tf-mRNA programs the synthesis of an immunoreactive precursor of transferrin with a molecular weight of 82 kD. More than 50% of the nucleotide sequence of Tf-mRNA is present in the paired state.  相似文献   

11.
In comparison to stimuli-responsive, multi-functional nanoparticles (NPs) from synthetic polymers, such NPs based on sustainable, naturally occurring polysaccharides are still scarce. In the present study, stable stimuli-responsive, fluorescent and magnetic NPs were fabricated using cellulose stearoyl esters (CSEs) consisting of cellulose and stearoyl groups. The multifunctional NPs with the average diameters between 80 and 250 nm were obtained after facile nanoprecipitation using CSE solutions containing Fe3O4-NPs. Using the aqueous solution of fluorescent rhodamine B as precipitant, NPs with rhodamine B on NP surface were obtained. Rhodamine B could be released depending on the temperature. In comparison, stearoylaminoethyl rhodamine B can be encapsulated in CSE-NPs, which renders obtained NPs reversible fluorescence in response to UV illumination and heat treatment.  相似文献   

12.
Ester hydrolysis by Sephadex-bound catalysts was studied in a flow-through system. Three different immobilized preparations were synthesized and used: histamine-, coimmobilized histamine-octylamine-, and octylamine-Sephadex; octylamine-Sephadex was used as a reference. Immobilization was carried out using water-soluble carbodiimide, which gave amide linkages between carboxymethyl Sephadex and the groups attached. It was found that the coimmobilized histamine-octylamine preparation was three times more efficient than immobilized histamine alone in the hydrolysis of the esterp-nitrophenylcaproate, whereas hardly any difference was found in the hydrolysis of the less hydrophobic substratep-nitrophenylacetate. We attribute this enhancement of the hydrolysis ofp-nitrophenylcaproate to local enrichment of the substrate on the histamine-octylamine matrix caused by the presence of hydrophobic octyl groups.  相似文献   

13.
The Small-angle X-ray scattering (SAXS) patterns of oriented LDPE (λ=1...5.7) were fitted by calculating the small-angle intensity for a structure consisting of a linear paracrystalline lattice built up by finite lamellar or cylindrical crystallites. The resulting data of the superstructure were compared with corresponding values from wideangle X-ray scattering. It is shown that it is impossible to get quantitative information about the superstructure of oriented polymers by using SAXS alone. Nevertheless, the qualitative transition of the crystals during orientation can be explained very well.  相似文献   

14.
A new affinity sorbent has been synthesized — soybean trypsin inhibitor (STI)-amylopectin-hydrazidosuccinyl-Sepharose — and its properties have been studied in comparison with those of an analogous adsorbent without the spacer STI-Sepharose. The STI-amylopectin-hydrazidosuccinyl-Sepharose adsorbent has been used for the purification of trypsin from porcine pancreas and of callicrein from human blood plasma.  相似文献   

15.
To understand the relationship between the morphology of carboxyl-functionalized polystyrene/silica (PS/SiO2) nanocomposite microspheres and the surface-enhanced Raman scattering (SERS) performance of PS/SiO2/Ag nanocomposite particles, core-shell and raspberry-like PS/SiO2 composite microspheres were used as templates to prepare PS/SiO2/Ag nanocomposite particles. The core-shell and raspberry-like structured PS/SiO2 templates were prepared via in situ sol-gel reaction by hydrolysis tetraethyl orthosilicate (TEOS) in alkali solution. Silver nanoparticles (10–50 nm) were loaded on the PS/SiO2 templates’ surface by chemical reduction. The morphology and structure of the PS/SiO2/Ag particles were characterized by TEM, SEM, X-ray diffraction (XRD), and ultraviolet-visible (UV-vis) spectroscopy. Rhodamine 6G (R6G) was selected as a model chemical to study the enhancement performance of substrate constructed by PS/SiO2/Ag nanocomposite. Results indicated that the PS/SiO2/Ag nanocomposite prepared based on the core-shell templates showed higher SERS activity. The beneficial effect was associated with a lower specific area of core-shell structure and the larger average diameter of nanosilvers than that of the raspberry-like templates.  相似文献   

16.
We report on the capillary electrophoretic behavior of citrate-capped gold and silver nanoparticles in aqueous medium when applying a ligand-exchange surface reaction with thiols. Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) of similar size (39?±?6 and 41?±?7 nm, respectively) and shape were synthesized, covered with a citrate shell, and characterized by microscopic and spectroscopic techniques. The analysis of these NPs by CE was accomplished by using a buffer solution (pH 9.7; 40 mM SDS, 10 mM CAPS; 0.1 % methanol) containing the anions of thioctic acid or thiomalic acid. These are capable of differently interacting with the surface of the AuNPs and AgNPs and thus introducing additional negative charges. This results in different migration times due to the formation of differently charged nanoparticles. Figure
Capillary electrophoretic behavior of citrate-capped gold and silver nanoparticles (NPs) in aqueous medium when applying a ligand-exchange surface reaction with thiols (thioctic and thiomalic acids), which introduces additional negative charges, has been studied  相似文献   

17.
A complete characterization of the different physico-chemical properties of nanoparticles (NPs) is necessary for the evaluation of their impact on health and environment. Among these properties, the surface characterization of the nanomaterial is the least developed and in many cases limited to the measurement of surface composition and zetapotential. The biological surface adsorption index approach (BSAI) for characterization of surface adsorption properties of NPs has recently been introduced (Xia et al. Nat Nanotechnol 5:671–675, 2010; Xia et al. ACS Nano 5(11):9074–9081, 2011). The BSAI approach offers in principle the possibility to characterize the different interaction forces exerted between a NP's surface and an organic—and by extension biological—entity. The present work further develops the BSAI approach and optimizes a solid-phase microextraction gas chromatography–mass spectrometry (SPME/GC-MS) method which, as an outcome, gives a better-defined quantification of the adsorption properties on NPs. We investigated the various aspects of the SPME/GC-MS method, including kinetics of adsorption of probe compounds on SPME fiber, kinetic of adsorption of probe compounds on NP's surface, and optimization of NP's concentration. The optimized conditions were then tested on 33 probe compounds and on Au NPs (15 nm) and SiO2 NPs (50 nm). The procedure allowed the identification of three compounds adsorbed by silica NPs and nine compounds by Au NPs, with equilibrium times which varied between 30 min and 12 h. Adsorption coefficients of 4.66?±?0.23 and 4.44?±?0.26 were calculated for 1-methylnaphtalene and biphenyl, compared to literature values of 4.89 and 5.18, respectively. The results demonstrated that the detailed optimization of the SPME/GC-MS method under various conditions is a critical factor and a prerequisite to the application of the BSAI approach as a tool to characterize surface adsorption properties of NPs and therefore to draw any further conclusions on their potential impact on health. Graphical Abstract
The basic principle of SPME/GC-MS method for characterization of nanoparticles surface adsorption forces  相似文献   

18.
Complexes formed between poly(acrylates) and polyclonal immunoglobulin G (IgG) in its native conformation and after heat stress were characterized using asymmetric flow field-flow fractionation (AF4) coupled with on-line UV-Vis spectroscopy and multi-angle light-scattering detection (MALS). Mixtures of IgG and poly(acrylates) of increasing structural complexity, sodium poly(acrylate) (PAA), a sodium poly(acrylate) bearing at random 3 mol % n-octadecyl groups, and a random copolymer of sodium acrylate (35 mol %), N-n-octylacrylamide (25 mol %) and N-isopropylacrylamide (40 mol %), were fractionated in a sodium phosphate buffer (0.02 M, pH 6.8) in the presence, or not, of 0.1 M NaCl. The AF4 protocol developed allowed the fractionation of solutions containing free poly(acrylates), native IgG monomer and dimer, poly(acrylates)/IgG complexes made up of one IgG molecule and a few polymer chains, and/or larger poly(acrylates)/IgG aggregates. The molar mass and recovery of the soluble analytes were obtained for mixed solutions of poly(acrylates) and native IgG and for the same solutions incubated at 65 °C for 10 min. From the combined AF4 results, we concluded that in solutions of low ionic strength, the presence of PAA increased the recovery ratio of IgG after thermal stress because of the formation of electrostatically-driven PAA/IgG complexes, but PAA had no protective effect in the presence of 0.1 M NaCl. Poly(acrylates) bearing hydrophobic groups significantly increased IgG recovery after stress, independently of NaCl concentration, because of the synergistic effect of hydrophobic and electrostatic interactions. The AF4 results corroborate conclusions drawn from a previous study combining four analytical techniques. This study demonstrates that AF4 is an efficient tool for the analysis of protein formulations subjected to stress, an important achievement given the anticipated important role of proteins in near-future human therapies. ?   相似文献   

19.
To prepare the flexible and stretchable electromagnetic shielding (EMS) fabric with environmental stability, this paper uses polytrimethylene terephthalate (PTT) fabric as substrate, the aniline monomer as raw material, hydrochloric acid (HCl) as the doping agent, ammonium persulfate (APS) as the oxidant to produce polyaniline (PANI)/PTT electromagnetic shielding fabric by in-situ chemical polymerization. It studies the influence of APS and HCl concentration on the surface electrical resistance and the absorption loss of electromagnetic shielding fabric. It can be observed that an increasing APS and HCl facilitate the absorption and spread of PANI into PTT fabric to form a conductive network, and improve the absorption loss efficiency, while the excess APS and HCl will hinder the PANI polymerization. The high electrical conductivity and absorption loss of the PANI/PTT fabric are obtained at the concentration of An 0.4 M, APS 0.4 M, HCl 1.25 M, and polymerization reaction time 120 min. Meanwhile, in-situ polymerization of PANI does not introduce new impurities and destroy the molecular structure of PTT.  相似文献   

20.
The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography. ?   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号