首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiophene monomer reacted with ferric chloride in the presence of a variety of fluoroalkyl end-capped N-(1,1-dimethyl-3-oxobutyl)acrylamide oligomers [RF-(DOBAA)x-RF] to afford nanometer size-controlled RF-(DOBAA)x-RF oligomers-polythiophene composites [RF-(DOBAA)x-RF/PTh]. RF-(DOBAA)x-RF/PTh nanocomposites thus obtained were demonstrated to have a good dispersibility and stability in methanol to give a transparent brown solution. In addition, these fluorinated nanocomposites were applied to the surface modification of common organic polymers such as poly(methyl methacrylate), and were dispersed regularly above the polymer surface.  相似文献   

2.
We have studied on the solubilization of single-walled carbon nanotubes (SW-CNTs) into aqueous and organic media by the use of a variety of nanometer size-controlled fluorinated self-assemblies, which were formed by the aggregations of end-capped fluoroalkyl segments in fluoroalkyl end-capped acrylic acid oligomers [RF-(ACA)n-RF], N,N-dimethylacrylamide oligomers [RF-(DMAA)n-RF], acryloylmorpholine oligomers [RF-(ACMO)n-RF], and N-(1,1-dimethyl-3-oxobutyl)acrylamide oligomers [RF-(DOBAA)n-RF]. Fluorinated self assemblies formed in organic media (colorless solutions) could solubilize SW-CNTs into organic media to afford the transparent pale yellow solutions. The dynamic light scattering measurements showed that the size of fluorinated self-assemblies increased after the solubilization of SW-CNTs into organic media. It was suggested that the solubilization of SW-CNTs into organic media is due to the encapsulation of SW-CNTs into fluorinated assemblies. Fluorinated assemblies were also able to solubilize SW-CNTs into water to give the transparent gray solutions. Among a variety of fluorinated assemblies, fluorinated assemblies formed by RF-(ACMO)n-RF [RF = CF(CF3)OC6F13] oligomer was more effective for the solubilization of SW-CNTs into both aqueous and organic media. Contact angle measurements of dodecane and the fluorescence spectra for poly(methyl methacrylate) cast film modified by fluorinated self-assemblies—SW-CNTs complexes showed that SW-CNTs are dispersed above the PMMA surface.  相似文献   

3.
Calcium chloride reacted with sodium carbonate in the presence of a variety of fluoroalkyl end‐capped oligomers such as fluoroalkyl end‐capped acrylic acid oligomer (RF‐[ACA]n‐RF), 2‐methacryloyloxyethanesulfonic acid oligomer (RF‐[MES]n‐RF), N,N‐dimethylacrylamide oligomer (RF‐[DMAA]n‐RF) and acryloylmorpholine oligomer (RF‐[ACMO]n‐RF) to afford the corresponding fluorinated oligomers/calcium carbonate composites. Each fluorinated oligomer/calcium carbonate composite thus obtained is nanometer size‐controlled very fine particles (25–114 nm) possessing a good dispersibility and stability in a variety of solvents including water. Thermal stability of these fluorinated calcium carbonate nanocomposites was studied by thermogravimetic analyses measurements. Fluorinated oligomes, in which the theoretical oligomer content in the composites is 19%, were able to give no weight loss corresponding to the content of oligomer in each case even after calcination at 800 °C. On the other hand, a slight weight loss corresponding to the contents of oligomers in the composites after calcination at 800 °C was observed in RF‐(MES)n‐RF/, RF‐(DMAA)n‐RF/ and RF‐(ACMO)n‐RF/calcium carbonate nanocomposites, in which the theoretical contents of the oligomers were 36–53%, although RF‐(ACA)n‐RF/calcium carbonate nanocomposites gave a clear weight loss corresponding to the contents of oligomer under similar conditions. Fluorinated oligomers/calcium carbonate nanocomposites possessing no weight loss at 800 °C were applied to the surface modification of poly(methyl methacrylate) (PMMA) to exhibit a good oleophobicity imparted by fluorines on the surfaces. Interestingly, these fluorinated calcium carbonate nanocomposites after calcination at 800 °C were found to exhibit the similar oleophobic characteristic on the modified PMMA surfaces as well as that of the nanocomposites before calcination. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Fluoroalkyl end-capped vinyltrimethoxysilane oligomer/anatase titanium oxide nanocomposite-encapsulated low molecular weight aromatic compounds [RF-(VM-SiO2)n-RF/an-TiO2/Ar-H] were prepared by the sol–gel reactions of the corresponding oligomer in the presence of anatase titanium oxide nanoparticles (an-TiO2) and the aromatic compounds such as bisphenol A [BPA], 1,1′-bi(2-naphthol) [BINOL], and fullerene under alkaline conditions. Thermogravimetric analyses measurements show that RF-(VM-SiO2)n-RF/an-TiO2 nanocomposite-encapsulated BPA and BINOL, in which the theoretical contents in the composites are 25?~?32 %, were found to give no weight loss corresponding to the contents of these aromatic compounds even after calcination at 800 °C. On the other hand, the corresponding nanocomposite-encapsulated fullerene exhibited weight loss behavior related to the presence of fullerene under similar conditions; however, UV–vis spectra showed the presence of the residual fullerene in the composites even after calcination. An-TiO2 in these fluorinated nanocomposites can keep its crystalline structure without phase transformation into rutile even after calcination at 1,000 °C, although the parent an-TiO2 nanoparticles underwent a complete phase transformation into rutile under similar conditions. Notably, RF-(VM-SiO2)n-RF/an-TiO2/Ar-H nanocomposites can give a good photocatalytic activity even after calcination at 1,000 °C for the decolorization of methylene blue under UV light irradiation. More interestingly, these fluorinated nanocomposites before and after calcination were found to exhibit a higher photocatalytic activity at the initial UV light irradiation from 1 to 3 min than that of the corresponding RF-(VM-SiO2)n-RF/an-TiO2 nanocomposites under similar conditions.
Figure
Encapsulated BPA and BINOL in the nanocomposites exhibit no weight loss even after calcination at 800 °C, and RF-(VM-SiO2)n-RF/an-TiO2/Ar-H nanocomposites before and after calcination at 1,000 °C can give a higher photocatalytic activity than that of RF-(VM-SiO2)n-RF/an-TiO2 nanocomposites. Notably, the photocatalytic activity of RF-(VM-SiO2)n-RF/an-TiO2/C60 nanocomposites after calcination increased by about 2.5-fold, compared with that of RF-(VM-SiO2)n-RF/an-TiO2 nanocomposites.  相似文献   

5.
Fluoroalkyl end-capped acrylic acid oligomer [RF-(ACA)n-RF]/, 2-(methacryloyloxy)ethanesulfonic acid oligomer [RF-(MES)n-RF]/, 2-acrylamido-2-methylpropanesulfonic acid oligomer [RF-(AMPS)n-RF]/polyaniline [PAn] nanocomposites were prepared by the polymerization of aniline initiated by ammonium persulfate in the presence of the corresponding oligomers, respectively. These fluorinated oligomers were also applied to the preparation of the corresponding fluorinated oligomers/phenyl-capped aniline dimer (An-dimer: N,N′-diphenyl-1,4-phenylenediamine) nanocomposites by the interaction of the fluorinated oligomers with An-dimer. These fluorinated composites thus obtained were found to afford nanometer size-controlled fine particles possessing a good dispersibility and stability in water and traditional organic media such as methanol. UV–vis spectra of RF-(MES)n-RF/PAn nanocomposites and RF-(AMPS)n-RF/PAn nanocomposites showed the similar absorption peaks around 350, 430, and 780 nm to those of the usual Brønsted acid-doped PAn; however, interestingly, RF-(ACA)n-RF/PAn nanocomposites were found to exhibit only an absorption peak around 430 nm based on the polaron transition.  相似文献   

6.
Fluoroalkyl end-capped N-(1,1-dimethyl-3-oxobutyl)acrylamide oligomer [RF-(DOBAA)n-RF] reacted with hibitane in methanol at 90 °C to afford RF-(DOBAA)n-RF oligomeric nanoparticles-encapsulated hibitane in good isolated yields. These fluorinated oligomeric particles-encapsulated hibitane were nanometer size-controlled very fine particles, and were found to exhibit a good dispersibility and stability in a wide variety of traditional organic solvents including fluorinated aliphatic solvents. Each dispersed solution with fluorinated nanoparticles afforded transparent colorless solution. These fluorinated nanoparticles were also found to exhibit a good antibacterial activity, and were applied to the surface modification of traditional organic polymers such as poly(methyl methacrylate).  相似文献   

7.
Fluoroalkyl end-capped vinyltrimethoxysilane oligomer [RF-(VM)n-RF] underwent the sol-gel reaction under alkaline conditions in the presence of anatase titanium oxide nanoparticles (an-TiO2) in tetrahydrofuran to give the corresponding fluorinated oligomer/anatase titanium oxide nanocomposites [RF-(VM-SiO2)n-RF/an-TiO2]. Crystalline structure of an-TiO2 in the nanocomposites thus obtained was found to keep completely its structure without phase transformation to rutile even after calcination at 1000 °C, although crystalline structure of the original an-TiO2 nanoparticles underwent a complete phase transformation to the rutile under similar conditions. Interestingly, RF-(VM-SiO2)n-RF/an-TiO2 nanocomposites before and after calcination at 1000 °C exhibited the similar photocatalytic activity for the decolorization of methylene blue under UV light irradiation.  相似文献   

8.
Cross-linked fluoroalkyl end-capped cooligomers possessing double decker-type aromatic silsesquioxane segments as core units [RF-(Ar-SiSQ) x -(Co-M) y -RF] were prepared under mild conditions by the cooligomerizations of fluoroalkanoyl peroxide with the corresponding aromatic silsesquioxane possessing bifunctional vinyl groups (Ar-SiSQ) and comonomers (Co-M) such as acryloylmorpholine (ACMO), N,N-dimethylacrylamide (DMAA) and N-(1,1-dimethyl-3-oxobutyl)acrylamide (DOBAA). Interestingly, these cross-linked fluorinated cooligomers thus obtained were found to form the nanometer size-controlled nanoparticles with a good dispersibility in a variety of solvents including fluorinated aliphatic solvents. These fluorinated cooligomeric nanoparticles were demonstrated to have red-shifted fluorescent emissions related to the presence of aromatic silsesquioxane segments, compared with that of parent aromatic silsesquioxane, indicating that each aromatic moiety in these nanoparticles can interact effectively with each other through the π–π stacking between the aromatic moieties to afford the red-shifted fluorescent emissions. These fluorinated nanoparticles were also applied to the surface modification of poly(methyl methacrylate) (PMMA) to exhibit not only a good oleophobicity imparted by fluorine but also a fluorescent emission behavior related to aromatic silsesquioxane segments in nanoparticles on the modified PMMA surface. More interestingly, cross-linked RF-(Ar-SiSQ) x -(DOBAA) y -RF cooligomeric nanoparticles interacted with fluorescein to give the corresponding fluorinated cooligomeric particles/fluorescein nanocomposites in methanol. These fluorinated fluorescein nanocomposites were found to afford an extraordinarily enhanced light absorption (λ max = 441 nm), compared with that of fluoroalkyl end-capped DOBAA oligomer [RF-(DOBAA) n -RF] possessing no aromatic silsesquioxane segments.  相似文献   

9.
Fluoroalkyl end-capped cooligomers having adamantane as a pendant group [RF-(Ad-HAc) x –(Co-M) y -RF] were prepared by the reactions of fluoroalkanoyl peroxide with 3-hydroxy-1-adamantylacrylate (Ad-HAc) and comonomers (Co-M) such as acrylic acid (ACA), N,N-dimethylacrylamide (DMAA), and acryloylmorpholine (ACMO) under mild conditions. Thermogravimetric analyses (TGA) showed that thermal stability of RF-(Ad-HAc) x –(Co-M) y -RF was superior to that of the corresponding fluoroalkyl end-capped cooligomers having adamantane in the main chains [RF-(Ad) x –(Co-M) y -RF] and the fluoroalkyl end-capped homooligomers possessing no adamantyl segments [RF-(M) n -RF]. It is interesting to note that fluoroalkyl end-capped Ad-Hac–DMAA cooligomer [RF-(Ad-HAc) x –(DMAA) y -RF] was found to form the nanometer size-controlled cooligomeric aggregates which consist of around 16 fluorinated cooligomeric molecules in methanol/water mixed solvents. Furthermore, these fluorinated cooligomeric aggregate could occupy around 320 ADMDD [5-(2-adamantylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione] molecules as guest molecules per aggregate core, although ADMDD could not be encapsulated into the RF-(Ad) x –(Co-M) y -RF cooligomeric and RF-(M) n -RF homooligomeric aggregate cores under similar conditions.  相似文献   

10.
Fluoroalkyl end-capped N-(1,1-dimethyl-3-oxobutyl)acrylamide oligomer [RF-(DOBAA)n-RF]/silica gel nanocomposite, which was prepared by reaction of the corresponding fluorinated oligomer with tetraethoxysilane and silica gel nanoparticles under alkaline conditions, exhibited no weight loss even at 800 °C equal to the original silica gel, although the corresponding parent RF-(DOBAA)n-RF oligomer was completely degraded at 600 °C. Thermogravimetric analyses/mass spectra of fluorinated nanocomposite showed that this nanocomposite decomposed around 280 °C to afford CO2 and H2O as the major evolved gaseous products including some minor fluoro- and hydrocarbons. X-ray photoelectron spectroscopy analyses also showed that the contents of C, F, and Si atoms in RF-(DOBAA)n-RF/SiO2 nanocomposite after the calcination at 800 °C were similar to those before the calcination. These findings suggest that the evolved gaseous products should be encapsulated quantitatively into nanometer-size-controlled silica matrices to give the fluorinated silica gel nanocomposite with no weight loss even at 800 °C equal to the original silica gel.  相似文献   

11.
Sol–gel reactions of fluoroalkyl end‐capped trimethoxyvinylsilane oligomer in the presence of low molecular weight aromatic compounds (ArH) such as 1,1′‐bi(2‐naphthol) (BINOL) and 2‐hydroxy‐4‐methoxy benzophenone (HMB) were found to proceed smoothly under alkaline conditions at room temperature to give the corresponding fluorinated oligomeric silica nanocomposites‐encapsulated aromatic compounds (BINOL and HMB) [RF‐(VM‐SiO2)n‐RF/ArH nanocomposites]. UV light irradiation (λmax: 254 nm) toward RF‐(VM‐SiO2)n‐RF/ArH nanocomposites showed that photodegradation of encapsulated ArH was not observed at all in the fluorinated nanocomposites cores, although the parent ArH can exhibit an effective photodegradation behavior under similar conditions. Especially, encapsulated ArH can exhibit no weight loss corresponding to the contents of the aromatic compounds in the fluorinated nanocomposites even after calcination at 800°C. Therefore, fluoroalkyl end‐capped trimethoxyvinylsilane oligomer has high potential for not only the thermal resistance but also the UV resistance fluorinated polymeric materials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A variety of fluoroalkyl end‐capped N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide oligomer [RF‐(DOBAA)n‐ RF]/silica nanocomposites, in which the oligomer contents are 18–96%, were prepared by reactions of the corresponding fluorinated oligomer with tetraethoxysilane and silica nanoparticles under alkaline conditions. Each fluorinated oligomer/silica composite thus obtained is nanometer size‐controlled very fine particles (22–68 nm) possessing a good dispersibility and stability in a variety of solvents including water. Interestingly, the weight loss of RF‐(DOBAA)n‐RF/silica nanocomposites, in which the oligomer contents are 18–72%, were not observed at all even at 800°C, as well as the original silica nanoparticles, although the corresponding sub‐micrometer size‐controlled RF‐ (DOBAA)n‐RF/silica composites (particle size: 359 nm) decomposed completely at 800°C to afford the weight loss in proportion to the content of RF‐(DOBAA)n‐RF oligomer in composites. On the other hand, a slight weight loss of RF‐(DOBAA)n‐RF/silica nanocomposites, in which the oligomer contents are 75–94%, was observed at 800°C compared to that of the original silica nanoparticles. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Calcium chloride reacted with sodium carbonate in the presence of a variety of self-assembled molecular aggregates formed by fluoroalkyl end-capped acrylic acid, 2-methacryloyloxyethane sulfonic acid, dimethylacrylamide, and acryloylmorpholine oligomers in aqueous solutions to afford the corresponding fluorinated oligomers/calcium carbonate composites in excellent to moderate isolated yields. These fluorinated calcium carbonate composites thus obtained were shown to have a good dispersibility not only in water but also in traditional organic media including fluorinated solvents. Dynamic light scattering measurements (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that these fluorinated composites are nanometer-size-controlled particles and well dispersed in these media. Cross-linked fluoroalkyl end-capped acrylic acid co-oligomer containing poly(oxyethylene) units was also applied to the preparation of new cross-linked fluorinated calcium carbonate nanocomposites under similar conditions. The obtained cross-linked fluorinated calcium carbonate nanocomposites were found to have an extremely higher dispersibility in aqueous and organic media including fluorinated solvents, compared to that of the corresponding fluoroalkyl end-capped oligomer nanocomposites. In particular, it was verified that these fluorinated calcium carbonate nanocomposites are applicable to the dispersion above poly(methyl methacrylate) (PMMA) film surface. Interestingly, field-emission SEM (FE-SEM) images of the cross-section of the modified PMMA films showed that calcium carbonate particles dispersed into these PMMA films could be arranged regularly above the modified film surface. More interestingly, cross-linked fluorinated oligomeric aggregates were able to provide suitable host moieties for the crystallization of calcium carbonate.  相似文献   

14.
Fluoroalkyl end‐capped acrylic acid oligomer [RF‐(ACA)n‐RF] reacted with tetraethoxysilane and silica nanoparticles in the presence of low molecular weight aromatic compounds [ Ar‐H ] such as cetylpyridinium chloride (CPC) and bisphenol AF under alkaline conditions to afford RF‐(ACA)n‐RF/SiO2 nanocomposites‐encapsulated Ar‐H in 47–94% isolated yields. These fluorinated silica nanocomposites‐encapsulated Ar‐H can exhibit no weight loss behavior corresponding to the contents of Ar‐H after calcination at 800 °C under atmospheric conditions, although fluoroalkyl end‐capped acrylic acid oligomer in the nanocomposites decomposed completely under similar conditions. UV‐vis spectra of well‐dispersed methanol solutions of RF‐(ACA)n‐RF/SiO2/CPC nanocomposites before calcination show that CPC can be encapsulated into fluorinated silica nanocomposites with encapsulated ratios: 23–43%. The fluorinated nanocomposites after calcination was found to exhibit a higher antibacterial activity related to the presence of CPC in the composites. Encapsulated bisphenol AF into RF‐(ACA)n‐RF/SiO2 nanocomposites before and after calcination at 800 °C can exhibit a good releasing ability toward methanol with released ratios: 48 and 26%, respectively. 1H MAS NMR, HPLC analysis, and LC‐MS spectra of RF‐(ACA)n‐RF/silica nanocomposites‐encapsulated bisphenol AF also showed the presence of bisphenol AF in the nanocomposites even after calcination at 800 °C under atmospheric conditions. These findings suggest that CPC and bisphenol AF can exhibit a nonflammable characteristic in the fluorinated silica nanocomposites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
A variety of fluoroalkyl end-capped oligomers were applied to the preparation of fluorinated oligomer/hydroxyapatite (HAp) composites (particle size: 38-356 nm), which exhibit a good dispersibility in water and traditional organic solvents. These fluoroalkyl end-capped oligomer/HAp composites were easily prepared by the reactions of disodium hydrogen phosphate and calcium chloride in the presence of self-assembled molecular aggregates formed by fluoroalkyl end-capped oligomers in aqueous solutions. In these fluorinated HAp composites thus obtained, fluoroalkyl end-capped acrylic acid oligomers and 2-methacryloyloxyethanesulfonic acid oligomer/HAp nanocomposites afforded transparent colorless solutions toward water; however, fluoroalkyl end-capped N,N-dimethylacrylamide oligomer and acryloylmorpholine oligomer were found to afford transparent colorless solutions with trace amounts of white-colored HAp precipitants under similar conditions. HAp could be encapsulated more effectively into fluorinated 2-methacryloyloxyethanesulfonic acid oligomeric aggregate cores to afford colloidal stable fluorinated oligomer/HAp composites, compared to that of fluorinated acrylic acid oligomers. These fluorinated oligomer/HAp composites were applied to the surface modification of glass and PVA to exhibit a good oleophobicity imparted by fluorine. HAp formation was newly observed on the modified polyethylene terephthalate film surface treated with fluorinated 2-methacryloyloxyethanesulfonic acid oligomers and acrylic acid oligomer/HAp composites by soaking these films into the simulated body fluid.  相似文献   

16.
Fluoroalkyl end-capped vinylphosphonic acid cooligomers-encapsulated magnetite nanocomposites were prepared by the magnetization of aqueous ferric and ferrous ions in the presence of the corresponding fluorinated cooligomers and magnetic nanoparticles under alkaline conditions. These fluorinated cooligomers magnetic composites are nanometer size-controlled very fine particles and have a good dispersibility and stability in water and traditional organic solvents. These fluorinated nanocomposites were also applied to the surface modification of poly(methyl methacrylate) to exhibit a good oleophobicity imparted by fluorine on their surface. Fluoroalkyl end-capped 2-methacryloyloxyethanesulfonic acid oligomer-encapsulated magnetite nanocomposites and fluoroalkyl end-capped 2-acrylamide-2-methylpropanesulfonic acid oligomer-encapsulated magnetite nanocomposites were prepared in good isolated yields by the magnetization of iron chlorides in the presence of the corresponding oligomers and magnetic nanoparticles under similar conditions. Colloidal stability of these fluorinated nanocomposites thus obtained in water was demonstrated to become extremely higher than that of fluorinated vinylphosphonic acid cooligomers/magnetic nanocomposites.  相似文献   

17.
Fluoroalkyl end‐capped acrylic acid, N,N‐dimethylacrylamide, N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide and vinyltrimethoxysilane oligomers reacted with polyamic acid possessing trimethoxysilyl groups under alkaline conditions to yield the corresponding fluoroalkyl end‐capped oligomers/polyamic acid/silica nanocomposites. These isolated fluorinated composite powders were found to afford nanometer size‐controlled fine particles with a good dispersibility and stability in water and traditional organic solvents. We succeeded in preparing new fluoroalkyl end‐capped oligomers/polyimide/silica nanocomposites by the imidization of fluorinated polyamic acid silica nanocomposites through the stepwise heating at 110 and 270°C under air atmosphere conditions. These fluorinated polyimide/silica nanocomposites thus obtained were applied to the surface modification of glass and poly(methyl methacrylate) (PMMA) to exhibit good hydro‐ and oleo‐phobic characteristics imparted by fluoroalkyl groups in the composites on their surface. In addition, the surface morphology of the modified glass treated with these fluorinated nanocomposites were analyzed by using FE‐SEM and DFM. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Two kinds of fluoroalkyl end-capped vinyltrimethoxysilane oligomer [RF-(VM) n -RF] silica nanocomposites containing biphenylene units were prepared by the sol-gel reactions of the corresponding oligomer with biphenylene-bridged ethoxysilanes or 4,4′-biphenol under alkaline conditions, respectively. One is the fluorinated oligomer/silica nanocomposites containing biphenylene units [RF-(VM-SiO2) n –RF/Ar-SiO 2 ], of whose biphenylene units were incorporated into nanocomposite cores through the siloxane bondings, and the other is the fluorinated oligomer/silica nanocomposites containing biphenylene units [RF-(VM-SiO2) n –RF/Biphenol], of whose biphenylene units were directly encapsulated into nanocomposite cores through the sol–gel process. Interestingly, the shape of RF-(VM-SiO2) n –RF/Ar-SiO 2 nanocomposites is morphologically controlled cubic particles; although the shape of RF-(VM-SiO2) n –RF/Biphenol nanocomposites is spherically fine particles. Thermogravimetric analyses 2H magic-angle spinning nuclear magnetic resonance, Ultraviolet visible, and fluorescent spectra showed that biphenylene units in RF-(VM-SiO2) n –RF/Ar-SiO 2 nanocomposites have a flammable characteristic after calcinations at 800 °C; in contrast, biphenylene units in RF-(VM-SiO2) n –RF/Biphenol nanocomposites have a nonflammable characteristic even after calcination at 800 °C. X-ray photoelectron spectroscopy analyses of these two kinds of fluorinated nanocomposites showed that nonflammable characteristic toward biphenylene units in the silica gel matrices is due to the formation of ammonium hexafluorosilicate during the sol–gel process.  相似文献   

19.
Fluoroalkyl end‐capped vinyltrimethoxysilane oligomer [RF‐(VM)nRF] reacted with boric acid to afford the corresponding fluorinated oligomeric silica/boric acid nanocomposite [RF‐(VM? SiO2)nRF/B(OH)3] fine particles with mean diameter: 36–105 nm. The obtained RF‐(VM? SiO2)nRF/B(OH)3 nanocomposites were applied to the encapsulation of low molecular weight organic compounds such as diphenylsilanediol, 1,1′‐bi‐2‐naphthol, 4,4′‐biphenol, bisphenol A, bisphenol F, bisphenol AF, biphenyl, dibenzyl, and pentaerythritol into these nanocomposite cores to provide the corresponding fluorinated oligomeric silica/boric acid nanocomposites—encapsulated these organic molecules. Interestingly, the obtained nanocomposites were found to exhibit no weight loss behavior corresponding to the contents of these guest molecules even after calcination at 800 °C, although these nanocomposites were isolated through no purification process. The RF‐(VM? SiO2)nRF nanocomposites—encapsulated these organic guest molecules were prepared under similar conditions. However, it was demonstrated that these nanocomposites can provide the clear weight loss corresponding to the contents of these guest molecules in the nanocomposites after calcination at 800 °C. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3835–3845  相似文献   

20.
Aromatic ketones such as 4′‐methoxyacetophenone (MAP), acetophenone (AP), 4‐acetylbiphenyl (ABP), and 2‐acetyl‐6‐methoxynapthalene (AMN) interacted with fluoroalkyl end‐capped 2‐acrylamido‐2‐methylpropanesulfonic acid oligomer [RF‐(AMPS)n‐RF] at 80°C for 3 h to give the corresponding fluorinated oligomer/aromatic ketones composites. In these composites, the RF‐(AMPS)n‐RF/MAP and /AP composites were found to give the homoaldol condensation products of MAP and AP, respectively. In contrast, the corresponding non‐fluorinated AMPS oligomer/MAP and sulfuric acid/MAP composites could not give the homoaldol product at all under similar conditions. This suggests that the RF‐(AMPS)n‐RF oligomer could provide the suitable fluorinated oligomeric gel newtwok cores to interact with MAP or AP as a guest molecule, and the homoaldol condensation of encapsulated MAP and AP should proceed smoothly in the fluorinated oligomeric gel network cores. The RF‐(AMPS)n‐RF/ABP and /AMN composites could not give the homoaldol products at all under similar conditions, indicating that the more bulky aromotic ketones than MAP or AP are not likely to be encapasulated as guest molecules into the fluorinated AMPS oligomeric gel netwok cores. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号