首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A one-dimensional approach for fast, robust, automatic adjustment of on-axis shims on high-resolution NMR spectrometers based on polynomial fitting of field inhomogeneity is described. Spherical harmonic and nonspherical harmonic terms of the field distribution of shim coils are precalibrated as polynomial coefficients by successively changing shim settings. This method greatly simplifies the shim precalibration and optimization procedures and is readily to be extended to three-dimensions to include off-axis shims.  相似文献   

2.
We have recently proposed a protocol for retrieving nuclear magnetic resonance (NMR) spectra based on a spatially-dependent encoding of the MR interactions. It has also been shown that the spatial selectivity with which spins are manipulated during such encoding opens up new avenues towards the removal of magnetic field inhomogeneities; not by demanding extreme Bo field uniformities, but rather by compensating for the dephasing effects introduced by the field distribution at a radiofrequency excitation and/or refocusing level. The present study discusses in further detail a number of strategies deriving from this principle, geared at acquiring both uni- as well as multi-dimensional spectroscopic data at high resolution conditions. Different variants are presented, tailored according to the relative sensitivity and chemical nature of the spin system being explored. In particular a simple multi-scan experiment is discussed capable of affording substantial improvements in the spectral resolution, at nearly no sensitivity or scaling penalties. This new compensation scheme is therefore well-suited for the collection of high-resolution data in low-field systems possessing limited signal-to-noise ratios, where magnetic field heterogeneities might present a serious obstacle. Potential areas of applications of these techniques include high-field in vivo NMR studies in regions near tissue/air interfaces, clinical low field MR spectroscopy on relatively large off-center volumes difficult to shim, and ex situ NMR. The principles of the different compensation methods are reviewed and experimentally demonstrated for one-dimensional inhomogeneities; further improvements and extensions are briefly discussed.  相似文献   

3.
Dynamic shimming in multi-slice imaging aims to achieve optimal magnetic field homogeneity by updating the shim coil currents for each slice in real time. Dynamic shimming may reduce the signal loss and geometric distortion caused by magnetic susceptibility variations between tissues and is likely to be valuable for fast T2*-sensitive imaging techniques like EPI. A computer simulation of dynamic shimming using real image data has been developed to demonstrate the effectiveness of higher order dynamic shimming for echo planar imaging at high magnetic field, and to investigate the potential benefits of different orders of shim coil. Geometric distortions and signal intensities for different degrees of dynamic shimming were simulated and the results are compared with the images obtained with a conventional shimming technique. These results demonstrate the effectiveness, necessity and difficulty of high order dynamic shimming.  相似文献   

4.
The main magnetic fields of mobile nuclear magnetic resonance (NMR) magnets differ from those of conventional NMR and magnetic resonance imaging (MRI) magnets. In the Halbach magnet, the main field B 0 is perpendicular to the longitudinal axis, the symmetry of the current distribution with respect to the symmetry of the magnetic field differs from that in conventional target-field applications, and the current distribution on the coil surface cannot be expressed in terms of periodic basis functions. To obtain the winding pattern of the coil, an efficacious target-field approach. The surface of a coil is divided into small discrete elements, where each element is represented by a magnetic dipole. From the stream function of the elements, the resultant magnetic field is calculated. The optimization strategy follows an objective function defined by the power dissipation or efficiency of the coil. This leads to the optimum stream function on the coil surface, whose contour lines define the winding patterns of the coil. This paper shows winding patterns designed of shim coils for Halbach magnet and illustrates the craft of a shim coil using flexible printed circuit board. The performance of the coils is verified by simulating the fields they produce over the sensitive volume.  相似文献   

5.
For a superconducting magnet of magnetic resonance imaging (MRI), the novel approach presented in this paper allows the design of cylindrical gradient and shim coils of finite length. The method is based on identification of the weighting of harmonic components in the current distribution that will generate a magnetic field whose z-component follows a chosen spherical harmonic function. Mathematical expressions which relate the harmonic terms in the cylindrical current distribution to spherical harmonic terms in the field expansion are established. Thus a simple matrix inversion approach can be used to design a shim coil of any order pure harmonic. The expressions providing a spherical harmonic decomposition of the field components produced by a particular cylindrical current distribution are novel. A stream function was applied to obtain the discrete wire distribution on the cylindrical-surface. This method does not require the setting of the target-field points. The discussion referring to matrix equations in terms of condition numbers proves that this novel approach has no ill-conditioned problems. The results also indicate that it can be used to design cylindrical-surface shim coils of finite length that will generate a field variation which follows a particular spherical harmonic over a reasonably large-sized volume.  相似文献   

6.
Dynamic slice-wise shimming improves B0 field homogeneity by updating shim coil currents for every slice in a multislice acquisition, producing better field homogeneity over a volume than can be obtained by a single static global shim. The first aim of this work was to evaluate the performance of slice-wise field-map-based second-order dynamic shimming in a human high-field 7 T clinical scanner vis-à-vis image based second order static global shimming. Another goal was to characterize eddy currents induced by second and third order shim switching. A final aim was to compare global and dynamic shimming through shim orders to elucidate the relative benefits of going to higher orders and to dynamic shim updating from a static shimming regime. An external hardware module was used to store and dynamically update slice-optimized shim values during multislice data acquisition. High-bandwidth multislice gradient echo scans with B0 field mapping and low-bandwidth single-shot echo planar scans were performed on phantoms and humans using second-order dynamic and static global shims. For the measurement of second and third order shim induced eddy currents, step response temporal phase changes of individual shims were measured and fit to shim harmonics spatially and to multiexponential decay functions temporally. Finally, an order-wise field-map-based comparison was performed with first, second and third order global static shimming, first and second order dynamic shimming, as well as combined second or third order global and first order dynamic shim. Dynamic shimming considerably improved B0 homogeneity compared to static global shimming both in phantoms and in human subjects, reducing image distortion and signal dropout. The unshielded second and third order shims generated strong B0 and self and cross-term eddy fields, with multiple time constants ranging from milliseconds to seconds. Field homogeneity improved with increasing order of shim, with dynamic shimming performing better than global shimming. Hybrid global and dynamic shimming approach yielded field homogeneity better than global static shims but worse than dynamic shims.  相似文献   

7.
胡洋  王秋良  李毅  朱旭晨  牛超群 《物理学报》2016,65(21):218301-218301
在磁共振成像设备中,为了消除目标区域内的高阶谐波磁场分量,传统方法采用无源匀场,但该方法匀场精度较低,针对性较差,适用于全局匀场,而有源匀场则可以通过优化线圈分布来产生所需要的特定的磁场分布.但是,由于匀场线圈线型的复杂度会随着线圈阶数的增加而增加,难以满足设计需要,因此本文提出了一种用于磁共振成像超导匀场线圈系统的多变量非线性优化设计方法.该方法基于边界元方法,将匀场线圈所产生的磁场与目标磁场之间的偏差作为目标函数,线匝间距、线圈半径等作为约束条件,通过非线性优化算法,得到满足设计要求的线圈分布.通过一个中心磁场为0.5 T的开放式双平面磁共振成像超导轴向匀场线圈的设计案例,说明本方法具有计算效率高、灵活性好的特点.  相似文献   

8.
Low-field nuclear magnetic resonance magnet(2 MHz) is required for rock core analysis. However, due to its low field strength, it is hard to achieve a high uniform B_0 field only by using the passive shimming. Therefore, active shimming is necessarily used to further improve uniformity for Halbach magnet. In this work, an equivalent magnetic dipole method is presented for designing shim coils. The minimization of the coil power dissipation is considered as an optimal object to minimize coil heating effect, and the deviation from the target field is selected as a penalty function term. The lsqnonlin optimization toolbox of MATLAB is used to solve the optimization problem. Eight shim coils are obtained in accordance with the contour of the stream function. We simulate each shim coil by ANSYS Maxwell software to verify the validity of the designed coils. Measurement results of the field distribution of these coils are consistent with those of the target fields.The uniformity of the B_0 field is improved from 114.2 ppm to 26.9 ppm after using these shim coils.  相似文献   

9.
梯度和匀场线圈性能的好坏直接影响磁共振成像质量.常规线圈在成像过程中存在一些固有的不足,如产生的磁场形态单一、不灵活,需要的线圈种类较多,结构较复杂等.而新型矩阵梯度线圈可以较好地弥补这些缺点.本文首先介绍了矩阵梯度线圈的概念及其特性,然后根据结构和功能对其研究现状进行分类汇总,在此基础上对矩阵线圈未来的发展趋势进行分析.此外,本文还对矩阵梯度线圈的前期研究基础进行了介绍.  相似文献   

10.
The use of high magnetic fields increases the sensitivity and spectral dispersion in magnetic resonance spectroscopy (MRS) of brain metabolites. Practical limitations arise, however, from susceptibility-induced field distortions, which are increased at higher magnetic field strengths. Solutions to this problem include optimized shimming, provided that active, i.e., electronic, shimming can operate over a sufficient range. To meet our shim requirements, which were an order of magnitude greater than the active shim capacity of our 7T MR system, we developed a combined passive and active shim approach. Simple geometries of ferromagnetic shim elements were derived and numerically optimized to generate a complete set of second-order spherical harmonic shim functions in a modular manner. The major goals of the shim design were maximization of shim field accuracy and ease of practical implementation. The theoretically optimized ferro-shim geometries were mounted on a cylindrical surface and placed inside the magnet bore, surrounding the subject's head and the RF coil. Passive shimming generated very strong shim fields and eliminated the worst of the field distortions, after which the field was further optimized by flexible and highly accurate active shimming. Here, the passive-shimming procedure was first evaluated theoretically, then applied in phantom studies and subsequently validated for in vivo 1H MRS in the macaque visual cortex. No artifacts due to the passive shim setup were observed; adjustments were reproducible between sessions. The modularity and the reduction to two pieces per shim term in this study is an important simplification that makes the method applicable also for passive shimming within single sessions. The feasibility of very strong, flexible and high-quality shimming via a combined approach of passive and active shimming is of great practical relevance for MR imaging and spectroscopy at high field strengths where shim power is limited or where shimming of specific anatomical regions inherently requires strong shim fields.  相似文献   

11.
A new hardware-based approach is presented to reduce data acquisition times in multi-dimensional NMR spectroscopy using a multiple-coil probe. Using a four-coil setup, two-dimensional COSY and TOCSY spectra were acquired in one-quarter the time of conventional spectra by simultaneous acquisition of different effective t1 evolution times for each coil. Data processing consists of simple phase-shifting and intensity normalization of the individual data sets, and results in spectra almost identical to those acquired in a conventional manner. This method can potentially be integrated with other new data acquisition and processing schemes for further increases in data acquisition speed.  相似文献   

12.
A method for compensating effect of field fluctuation is examined to attain high-resolution NMR spectra with resistive and hybrid magnets. In this method, time dependence of electromotive force induced for a pickup coil attached near a sample is measured synchronously with acquisition of NMR. Observed voltage across the pickup coil is converted to field fluctuation data, which is used to deconvolute NMR signals. The feasibility of the method is studied by (79)Br MAS NMR of KBr under a 30T magnetic field of a hybrid magnet. Twenty single-scan NMR signals were accumulated after the manipulation, resulting in a high-resolution NMR spectrum.  相似文献   

13.
A new, simple, and inexpensive technique is presented for monitoring high-resolution solid-state NMR of 13C at temperatures ranging between 85 and 450 K. In this procedure, the reaction conditions are controlled by preparing samples at 77 K in 5 mm NMR tubes, while attached to a vacuum system. The NMR tubes are prefitted with a rotor for spinning. After preparation, the samples are sealed, transferred to the double-resonance MAS NMR probe, and analyzed, all while the sample temperature is maintained as low as 85 K. The spinning rates vary from 3.0 kHz at 85 K to 5.2 kHz at 300 K using nitrogen drive gas. Probe design and performance, sample-preparation procedure, and details of the low-temperature experiment are described. In general, the technique may be applied in studies of low-temperature reaction mechanisms and kinetics. 13C CP/MAS spectra of ethylene adsorbed on silica-supported ruthenium catalyst are presented to illustrate its performance and possible application.  相似文献   

14.
We present a simple, generally applicable approach to prevent sample evaporation when working at elevated temperatures in high resolution NMR. It consists of experimentally sealing the NMR sample by a second liquid (Experimental Liquid Sealing, ELISE). For aqueous samples, we identified the mineral oil commonly used in PCR application as the best candidate, because it contains only a very limited amount of water-soluble contaminants, is stable over time and heat resistant. The procedure does not interfere with shim settings, and is compatible with a wide variety of samples, including oligosaccharides and proteins. For chloroform samples, a simple drop of water allows to efficiently seal the sample, avoiding solvent evaporation even over lengthy time periods.  相似文献   

15.
A temperature variable magnetic resonance imaging (MRI) system has been developed using a 1.0 T permanent magnet. A permanent magnet, gradient coils, radiofrequency coil, and shim coil were installed in a temperature variable thermostatic bath. First, the variation in the magnetic field inhomogeneity with temperature was measured. The inhomogeneity has a specific spatial symmetry, which scales linearly with temperature, and a single-channel shim coil was designed to compensate for the inhomogeneity. The inhomogeneity was drastically reduced by shimming over a wide range of temperature from −5 °C to 45 °C. MR images of an okra pod acquired at different temperatures demonstrated the high potential of the system for visualizing thermally sensitive properties.  相似文献   

16.
A capacitive coupling between a secondary radiofrequency (rf) channel and the gradient coil of a standard commercially available high resolution NMR spectrometer and probe head is described and used to introduce a low level exponentially damped rf signal near the frequency of the primary rf channel to serve as an external concentration standard, in analogy to the so-called ERETIC™ method. The stability of this inexpensive and simple to implement method, here referred to as the Pulse Into the Gradient (PIG) approach, is superb over a 14-h period and both gradient tailored water suppression and one-dimensional imaging applications are provided. Since the low level signal is introduced via the pulsed field gradient coil, the coupling is identical to that for a free induction signal and thus the method proves to be immune (within 5%) to sample ionic strength effects up to the 2 M NaCl solutions explored here.  相似文献   

17.
We discuss a simple approach to enhance sensitivity for (13)C high-resolution solid-state NMR for proteins in microcrystals by reducing (1)H T(1) relaxation times with paramagnetic relaxation reagents. It was shown that (1)H T(1) values can be reduced from 0.4-0.8s to 60-70 ms for ubiquitin and lysozyme in D(2)O in the presence of 10 mM Cu(II)Na(2)EDTA without substantial degradation of the resolution in (13)C CPMAS spectra. Faster signal accumulation using the shorter (1)H T(1) attained by paramagnetic doping provided sensitivity enhancements of 1.4-2.9 for these proteins, reducing the experimental time for a given signal-to-noise ratio by a factor of 2.0-8.4. This approach presented here is likely to be applicable to various other proteins in order to enhance sensitivity in (13)C high-resolution solid-state NMR spectroscopy.  相似文献   

18.
介绍一体化核磁共振波谱仪梯度-场频联锁-匀场系统的设计方案. 该方案使用嵌入式以太网、FPGA(Field Programmable Gate Array,现场可编程门阵列)、EMI(External Memory Interface, 外部存储器接口)和高速串行总线等技术构建了基于以太网的通信系统和使用并行运算的控制系统, 并具备CAN(Controller Area Network,控制器局域网)总线通信的能力. 梯度放大器通过LVDS(Low-Voltage Differential Signaling,低压差分信号传输)接口与主控系统的梯度波形发生器连接,实现与谱仪工作站的交互. 系统采用插板式结构和通用性电路的设计方法,具有很好的扩展能力和适应性,能够满足不同谱仪的需求. 系统在11.7 T(500 MHz)NMR系统中进行了有效的锁场、匀场和梯度特性的测试,证明了该方案的可行性.  相似文献   

19.
A new method for NMR characterization of mechanical waves, based upon radiofrequency field gradient for motion encoding, is proposed. A binomial B1 gradient excitation scheme was used to visualize the mobile spins undergoing a periodic transverse mechanical excitation. A simple model was designed to simulate the NMR signal as a function of the wave frequency excitation and the periodicity of the NMR pulse sequence. The preliminary results were obtained on a gel phantom at low vibration frequencies (0-200 Hz) by using a ladder-shaped coil generating a nearly constant RF field gradient along a specific known direction. For very small displacements and/or B1 gradients, the NMR signal measured on a gel phantom was proportional to the vibration amplitude and the pulse sequence was shown to be selective with respect to the vibration frequency. A good estimation of the direction of vibrations was obtained by varying the angle between the motion direction and the B1 gradient. The method and its use in parallel to more conventional MR elastography techniques are discussed. The presented approach might be of interest for noninvasive investigation of elastic properties of soft tissues and other materials.  相似文献   

20.
High-resolution magic angle spinning (HRMAS) has become an extremely versatile tool to study heterogeneous systems. HRMAS relies on magic angle spinning of the sample and on pulse sequences originally developed for liquid state NMR. In most cases the outcome of the experiment is conform to what is expected from high-resolution liquid state NMR spectroscopy. However in some instances, experiments run under MAS can produce some very puzzling results. After reviewing the basic hardware which is at the heart of HRMAS spectroscopy, we show that the origin of this behavior lies in the natural time-dependence of some physical quantities imparted by the rotation. We focus in particular on the effects of B1 inhomogeneities on the nutation, the (90 degrees)+x-t-(90 degrees )-x and the MLEV16 experiments. Different models of radiofrequency distribution of B1 fields in a solenoidal coil are derived from simple geometrical considerations. These models are shown by NMR spin dynamics calculations to reproduce the experimental NMR results. They are also consistent with electromagnetic simulations of the B1 field distribution inside a solenoidal coil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号