首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrocatalytic properties of palladium nanocubes towards the electrochemical oxidation of formic acid were studied in H(2)SO(4) and HClO(4) solutions and compared with those of spherical Pd nanoparticles. The spherical and cubic Pd nanoparticles were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The intrinsic electrocatalytic properties of both nanoparticles were shown to be strongly dependent on the amount of metal deposited on the gold substrate. Thus, to properly compare the activity of both systems (spheres and nanocubes), the amount of sample has to be optimized to avoid problems due to a lower diffusion flux of reactants in the internal parts of the catalyst layer resulting in a lower apparent activity. Under the optimized conditions, the activity of the spheres and nanocubes was very similar between 0.1 and 0.35 V. From this potential value, the activity of the Pd nanocubes was remarkably higher. This enhanced electrocatalytic activity was attributed to the prevalence of Pd(100) facets in agreement with previous studies with Pd single crystal electrodes. The effect of HSO(4)(-)/SO(4)(2-) desorption-adsorption was also evaluated. The activity found in HClO(4) was significantly higher than that obtained in H(2)SO(4) in the whole potential range.  相似文献   

2.
Tailoring the chemical reactivity of nanomaterials at the atomic level is one of the most important challenges in catalysis research. In order to achieve this elusive goal, fundamental understanding of the geometric and electronic structure of these complex systems at the atomic level must be obtained. This article reports the influence of the nanoparticle shape on the reactivity of Pt nanocatalysts supported on γ-Al(2)O(3). Nanoparticles with analogous average size distributions (~0.8-1 nm), but with different shapes, synthesized by inverse micelle encapsulation, were found to display distinct reactivities for the oxidation of 2-propanol. A correlation between the number of undercoordinated atoms at the nanoparticle surface and the onset temperature for 2-propanol oxidation was observed, demonstrating that catalytic properties can be controlled through shape-selective synthesis.  相似文献   

3.
Monodisperse butylphenyl-functionalized palladium (Pd-BP, dia. 2.24 nm) nanoparticles were synthesized through co-reduction of butylphenyldiazonium and H(2)PdCl(4) by NaBH(4). Because of this unique surface functionalization and a high specific electrochemical surface area (122 m(2) g(-1)), the Pd-BP nanoparticles exhibited a mass activity ~4.5 times that of commercial Pd black for HCOOH electrooxidation.  相似文献   

4.
Butylphenyl-functionalized Pt nanoparticles (Pt-BP) with an average core diameter of 2.93 ± 0.49 nm were synthesized by the co-reduction of butylphenyl diazonium salt and H(2)PtCl(4). Cyclic voltammetric studies of the Pt-BP nanoparticles showed a much less pronounced hysteresis between the oxidation currents of formic acid in the forward and reverse scans, as compared to that on naked Pt surfaces. Electrochemical in situ FTIR studies confirmed that no adsorbed CO, a poisoning intermediate, was generated on the Pt-BP nanoparticle surface. These results suggest that functionalization of the Pt nanoparticles by butylphenyl fragments effectively blocked the CO poisoning pathway, most probably through third-body effects, and hence led to an apparent improvement of the electrocatalytic activity in formic acid oxidation.  相似文献   

5.
Spontaneous modification of polycrystalline Pt by irreversibly adsorbed bismuth was performed in BiCl3 solution in concentrated hydrochloric acid under open-circuit conditions. After spontaneous modification, followed by extensive rinsing with water and drying, the surface was characterized using X-ray photoelectron spectroscopy and electrochemistry. Bi-oxy(chloride), oxide species, and metallic Bi were found at a submonolayer coverage on the Pt surface after spontaneous modification. The electrochemical response of Bi-modified polycrystalline Pt electrode in sulfuric acid solution exhibits a complex multi-peak feature, which is resulting in about constant redox charge (Bi species coverage) in the potential region from 0 to 0.9 V (vs. a standard hydrogen electrode). The spontaneously Bi-modified Pt catalyst in model studies exhibits a superior activity towards formic acid oxidation at fuel cell anode relevant potentials. The catalytic effect of bismuth oxy-species is explained in terms of both inhibition of COad formation and oxidation of COad in reaction with Bi-oxy-species.  相似文献   

6.
This work presents characteristics of Pt deposits on Au(111) obtained by the use of spontaneous deposition and investigated by electrochemical scanning tunneling microscopy (EC-STM). On such prepared and STM characterized Au(111)/Pt surfaces, we studied electrocatalytic oxidation of formic acid and methanol. We show that the first monatomic layer of Pt displays a (square root 3 x square root 3)R30 degrees surface structure, while the second layer is (1 x 1). After prolonged deposition, multilayer Pt deposits are formed selectively on Au(111) surface steps and are 1-20 nm wide and one to five layers thick. On the optimized Au(111)/Pt surface, formic acid oxidation rates are enhanced by a factor of 20 compared to those of pure Pt(111). The (square root 3 x square root 3)R30 degrees-Pt yields very low methanol oxidation rates, but the rates increase significantly with further Pt growth.  相似文献   

7.
In this paper, formic acid electrooxidation on ethylidyne modified Pt nanoparticles is reported. The formation as well as the stability electrochemical range of the ethylidyne adlayers was studied by surface enhanced Raman spectroscopy (SERS) and cyclic voltammetry. The presence of adsorbed ethylidyne on platinum nanoparticles improved their electrocatalytic activity towards formic acid oxidation, which could be attributed to an instabilization of the carbon monoxide poisonous species as evidenced by SERS. The use of in situ spectroscopic measurements with electrocatalysts similar to those applied in practice is highlighted.  相似文献   

8.
以硼掺杂碳化硅(B0.1SiC)为载体,采用循环伏安法在B0.1SiC载体上电沉积Pt纳米粒子制备了Pt/B0.1SiC催化剂。利用X射线光电子能谱、X射线衍射、氮气吸附-脱附、扫描电镜及透射电镜等测试方法对催化剂的晶型、表面性质及形貌进行了表征。结果表明,硼原子掺杂进入SiC晶格并取代了Si位点,使B0.1SiC载体的导电性增强;Pt纳米粒子均匀地分布在B0.1SiC载体上,平均粒径为2.7 nm。与相同条件下制备的Pt/SiC催化剂相比,Pt/B0.1SiC具有较大的电化学活性表面积、更高的甲醇催化氧化活性和稳定性。  相似文献   

9.
The high-performance anodic electrocatalysts is pivotal for realizing the commercial application of the direct formic acid fuel cells. In this work, a simple polyethyleneimine-assisted galvanic replacement reaction is applied to synthesize the high-quality PtTe alloy nanowires(PtTe NW) by using Te NW as an efficient sacrificial template. The existence of Te atoms separates the continuous Pt atoms, triggering a direct reaction pathway of formic acid electrooxidation reaction(FAEOR) at PtTe NW. Th...  相似文献   

10.
We report a combined X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and chronoamperometry (CA) study of formic acid electrooxidation on unsupported palladium nanoparticle catalysts in the particle size range from 9 to 40 nm. The CV and CA measurements show that the most active catalyst is made of the smallest (9 and 11 nm) Pd nanoparticles. Besides the high reactivity, XPS data show that such nanoparticles display the highest core-level binding energy (BE) shift and the highest valence band (VB) center downshift with respect to the Fermi level. We believe therefore that we found a correlation between formic acid oxidation current and BE and VB center shifts, which, in turn, can directly be related to the electronic structure of palladium nanoparticles of different particle sizes. Clearly, such a trend using unsupported catalysts has never been reported. According to the density functional theory of heterogeneous catalysis, and mechanistic considerations, the observed shifts are caused by a weakening of the bond strength of the COOH intermediate adsorption on the catalyst surface. This, in turn, results in the increase in the formic acid oxidation rate to CO2 (and in the associated oxidation current). Overall, our measurements demonstrate the particle size effect on the electronic properties of palladium that yields different catalytic activity in the HCOOH oxidation reaction. Our work highlights the significance of the core-level binding energy and center of the d-band shifts in electrocatalysis and underlines the value of the theory that connects the center of the d-band shifts to catalytic reactivity.  相似文献   

11.
Direct formic acid fuel cell(DFAFC) is an important research project in clean energy field.However,commercialization of DFAFC is still largely limited by the available catalysts with unsatisfied activity,durability and cost for formic acid electrooxidation(FAEO).Using Pt-and Pd-based nanoclusters as electrocatalysts is a particularly promising strategy to solve the above problem,but two attendant problems need to be solved firstly.(Ⅰ) The controllable synthesis of practicable and stable sub-2 nm...  相似文献   

12.
A new facile approach towards developing superior Pt-based catalysts for HCOOH electrooxidation has been proposed, which is exemplified with a mimetic underpotential deposition (MUPD) of Sb on Pt surfaces to attain a favorable coverage. Suitable Sb modification was achieved simply through immersing a bulk Pt electrode or dispersing Pt/C powders in a Sb(III) solution mixed with ascorbic acid (AA). AA serves as the mild reducing agent to ensure freshly reduced Pt surfaces for Sb modification, as demonstrated by the negatively shifted open circuit potential. The catalytic activity towards HCOOH electrooxidation on the above Sb-modified Pt/C catalyst far exceeds that on commercial Pt–Ru/C or Sb-modified Pt/C through traditional irreversible adsorption. This electroless approach is generally applicable to all types of Pt surfaces, in particular suited for upgrading Pt/C for practical anode catalysts of direct formic acid fuel cells.  相似文献   

13.
Wormholelike mesoporous carbons(WMCs) with three different pore diameters(D_p),namely WMC-F7(D_p=8.5nm),WMC-F30(D_p=4.4nm),and WMC-FO(D_p = 3.1nm) are prepared via a modified sol-gel process.Then PtRu nanoparticles with the particle size(d_(Pt)) of ~3.2 nm supported on WMCs are synthesized with a modified pulse microwave-assisted polyol method.It is found that the pore diameter of WMCs plays an important role in the electrochemical activity of PtRu toward alcohol electrooxidation reaction.PtRu/WMC-F7 with Dp 2d_(Pt) exhibits the largest electrochemical surface area(ESA) and the highest activity toward methanol electrooxidation.With the decrease in D_p,PtRu/WMC-F30 and PtRu/WMC-FO have much lower ESA and electrochemical activity,especially for the isopropanol electrooxidation with a larger molecular size.When D_p is more than twice d_(Pt),the mass transfer of reactants and electrolyte are easier,and thus more PtRu nanoparticles can be utilized and the catalysts activity can be enhanced.  相似文献   

14.
Formic acid(HCOOH) is considered as a promising viable fuel-cell ingredient for low temperature proton-exchange membrane fuel cells as a consequence of their high safety and energy density. As one prototype reaction, the study of HCOOH decomposition and electrooxidation is also helpful to understand the reaction mechanism of other small molecular organics. Herein, we present a comprehensive overview of HCOOH decomposition and electrooxidation in different environment conditions and analyze the r...  相似文献   

15.
The mechanism of formic acid electrooxidation on iron tetrasulfophthalocyanine (FeTSPc) modified Pt electrode was investigated with electrochemical methods. It was found that a “third-body” effect of FeTSPc on Pt electrode predominates during the electrooxidation process based on unusual electrochemical results. The modification leads formic acid electrooxidation to take place through a desired direct pathway, in which the mechanism is proposed to be the gradual dehydrogenation of formic acid and the reaction of formate with hydroxyl species.  相似文献   

16.
Qian  Kun  Hao  Furui  Wei  Shuhai  Wang  Yihong  Ge  Cunwang  Chen  Ping  Zhang  Yihong 《Journal of Solid State Electrochemistry》2017,21(1):297-304
Journal of Solid State Electrochemistry - The preparation of well-dispersed nanoparticles (NPs) has been one of the challenges in the development of nanoscale processing. Here, we firstly prepared...  相似文献   

17.
高性能低成本的担载型铂基催化剂是直接甲醇燃料电池(DMFC)实用化过程中的一大挑战.利用高比表面积、高稳定性、容易负载金属的载体实现 Pt颗粒的高度分散,既可提高催化剂的催化性能,又可提高 Pt的利用率以降低成本,是担载型 Pt基催化剂实用化的有效途径.碳材料是一种常用的催化剂载体,近年来我们课题组发展了一种高性能的碳纳米笼材料,并可通过异原子掺杂调变其表面性能,提高其活性和负载能力.我们采用原位氧化镁模板法制备氮掺杂碳纳米笼:以具有多级结构的碱式碳酸镁作为氧化镁模板的前体,吡啶为碳源和氮源,经高温热解沉积,在原位形成的氧化镁模板表面形成氮掺杂的石墨化碳纳米薄层;经稀盐酸浸泡并洗涤,获得高纯度的氮掺杂碳纳米笼.氮掺杂碳纳米笼具有分等级的微纳米结构、高导电性、高比表面积和可调变的孔结构,结合表面氮原子的锚钉作用,氮掺杂碳纳米笼有望成为电化学催化剂 Pt的优良载体.
  在前期研究基础上,本文探索多级结构氮掺杂碳纳米笼(hNCNC)作为新型载体负载 Pt的能力,并评价所构建的负载型催化剂 Pt/hNCNC的电催化性能.通过简便的微波辅助多元醇还原法,将氯铂酸还原成 Pt纳米粒子负载于 hNCNC的表面.为了揭示氮掺杂的效应,我们对比研究了具有相似分级结构但无掺杂的碳纳米笼(hCNC)以及商业化活性炭(Val-can XC-72)作为载体的情况.经热重(TG)和 X射线光电子能谱(XPS)分析,三种催化剂 Pt/hNCNC、Pt/hCNC和 Pt/XC-72的负载量均接近理论负载量(23.1 wt%),都主要以金属态存在.然而,扫描电子显微镜(SEM)和透射电子显微镜(TEM)结果表明, Pt/hNCNC的 Pt分散状态优于 Pt/hCNC,更远优于 Pt/XC-72. Pt/hNCNC的平均 Pt粒径最小,仅约3.3 nm.这种良好的分散状态主要得益于氮原子掺杂,高负电性的氮原子改变了局域的表面极性,有利于 Pt颗粒的成核,也有利于固定 Pt颗粒.
  由于 hNCNC对 Pt的优异分散能力, Pt/hNCNC表现出高的电化学活性面积.氢吸附和一氧化碳溶出伏安曲线表明, Pt/hNCNC的电化学活性面积高于 Pt/hCNC和 Pt/XC-72,这与显微观察和 X射线衍射(XRD)结果相吻合. Pt/hNCNC展现出优异的甲醇电催化氧化活性和高稳定性,其催化电流明显高于 Pt/hCNC和 Pt/XC-72,电流衰减亦慢于 Pt/hCNC和 Pt/XC-72. hNCNC的分级微纳米结构有利于孔内传质和电子输运,从而提高反应速度. hNCNC的氮掺杂有利于 Pt在载体表面的分散,增强了载体-金属相互作用,提高了电化学活性面积和催化活性.为了进一步考察 hNCNC对 Pt的负载能力,本文还考察了高负载量 Pt/hNCNC的性能.在负载量高达60 wt%时, Pt/hNCNC中的 Pt颗粒仍无明显聚集,其甲醇氧化电流增加了30%,可以有效提高 DMFC的输出电流密度.
  综上可见, hNCNC可以有效分散并稳定 Pt颗粒,从而提高电化学活性面积和甲醇电催化氧化活性,优于未掺杂的碳纳米笼和传统碳材料,展示了 hNCNC高分散 Pt颗粒用作 DMFC的高效阳极催化剂的重要前景,也表明 hNCNC有望成为应用广泛的新型载体.  相似文献   

18.
Heterostructures have emerged as elaborate structures to improve catalytic activity owing to their combined surface and distinct inverse interface. However, fabricating advanced nanocatalysts with facetdependent interface remains an unexploited and promising area. Herein, we render the controlled growth of Pt nanoparticles(NPs) on Pd nanosheets(NSs) by regulating the reduction kinetics of Pt2+with solvents. Specifically, the fast reduction kinetic makes the Pt NPs uniformly deposited ...  相似文献   

19.
Polypyrrole (PPy)-modified graphene can be used as a support of electrocatalyst in methanol oxidation reaction. In this paper, the Pt/PPy-graphene electrocatalyst is prepared through in situ synthetic method. The structure and electrochemical property of the electrocatalyst were investigated. The results show that the ultrathin water film between graphene and PPy was favorable as the PPy was distributed uniformly on the upper surface of graphene. The PPy-modified graphene enables the formation of Pt nanoparticles having a very narrow size profile centered around 8 nm and a very even spatial distribution on the graphene surface. The Pt/PPy-graphene catalyst exhibits a noticeably higher electrochemical activity in methanol oxidation reaction and performance durability than the Pt/graphene catalyst, and thus, PPy-graphene is a promising alternative catalyst support in direct methanol fuel cells.  相似文献   

20.
Carbon nanotubes have been proposed as advanced metal catalyst support for electrocatalysis. In this work, different carbon support materials including single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs) and XC-72 carbon black, were compared in terms of their electrochemical properties using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The SWNTs is found to exhibit the highest accessible surface area in electrochemical reactions and the lowest charge transfer resistance at the SWNTs/electrolytes. These carbon materials are then loaded with varying amount of Pt by the electrodeposition technique to prepare carbon supported Pt catalysts. Electrochemical measurements of methanol oxidation reveal that the SWNTs supported Pt catalyst exhibits the highest mass activity (mA/mg-Pt). In comparison with Pt-XC-72 and Pt-MWNTs, the remarkably enhanced electrocatalytic activity of the Pt-SWNTs maybe attributed to a higher dispersion and utilization of the Pt particles, which are directly related to the electrochemical characteristics of SWNTs. The high concentration of oxygen-containing functional groups, high accessible surface area, low charge transfer resistance at the carbon/electrolyte interfaces can be important for the Pt dispersing and strong metal-support interaction in the Pt-SWNTs catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号