首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we study the chaotic dynamics of fractional-order Genesio-Tesi system. Theoretically, a necessary condition for occurrence of chaos is obtained. Numerical investigations on the dynamics of this system have been carried out and properties of the system have been analyzed by means of Lyapunov exponents. It is shown that in case of commensurate system the lowest order of fractional-order Genesio-Tesi system to yield chaos is 2.79. Further, chaos synchronization of fractional-order Genesio-Tesi system is investigated via two different control strategies. Active control and sliding mode control are proposed and the stability of the controllers are studied. Numerical simulations have been carried out to verify the effectiveness of controllers.  相似文献   

2.
This study examines the two most attractive characteristics, memory and chaos, in simulations of financial systems. A fractional-order financial system is proposed in this study. It is a generalization of a dynamic financial model recently reported in the literature. The fractional-order financial system displays many interesting dynamic behaviors, such as fixed points, periodic motions, and chaotic motions. It has been found that chaos exists in fractional-order financial systems with orders less than 3. In this study, the lowest order at which this system yielded chaos was 2.35. Period doubling and intermittency routes to chaos in the fractional-order financial system were found.  相似文献   

3.
In this work, stability analysis of the fractional-order modified Autonomous Van der Pol–Duffing (MAVPD) circuit is studied using the fractional Routh–Hurwitz criteria. A necessary condition for this system to remain chaotic is obtained. It is found that chaos exists in this system with order less than 3. Furthermore, the fractional Routh–Hurwitz conditions are used to control chaos in the proposed fractional-order system to its equilibria. Based on the fractional Routh–Hurwitz conditions and using specific choice of linear controllers, it is shown that the fractional-order MAVPD system is controlled to its equilibrium points; however, its integer-order counterpart is not controlled. Moreover, chaos synchronization of MAVPD system is found only in the fractional-order case when using a specific choice of nonlinear control functions. This shows the effect of fractional order on chaos control and synchronization. Synchronization is also achieved using the unidirectional linear error feedback coupling approach. Numerical results show the effectiveness of the theoretical analysis.  相似文献   

4.
In this paper we numerically investigate the chaotic behaviors of the fractional-order Chen system. A striking finding is that the lowest order for this system to have chaos is 0.3, which is the lowest-order chaotic system among all the found chaotic systems to date.  相似文献   

5.
In this paper, a sliding mode control law is designed to control chaos in a class of fractional-order chaotic systems. A class of unknown fractional-order systems is introduced. Based on the sliding mode control method, the states of the fractional-order system have been stabled, even if the system with uncertainty is in the presence of external disturbance. In addition, chaos control is implemented in the fractional-order Chen system, the fractional-order Lorenz system, and the same to the fractional-order financial system by utilizing this method. Effectiveness of the proposed control scheme is illustrated through numerical simulations.  相似文献   

6.
Chaotic systems without equilibrium points represent an almost unexplored field of research, since they can have neither homoclinic nor heteroclinic orbits and the Shilnikov method cannot be used to demonstrate the presence of chaos. In this paper a new fractional-order chaotic system with no equilibrium points is presented. The proposed system can be considered “elegant” in the sense given by Sprott, since the corresponding system equations contain very few terms and the system parameters have a minimum of digits. When the system order is as low as 2.94, the dynamic behavior is analyzed using the predictor–corrector algorithm and the presence of chaos in the absence of equilibria is validated by applying three different methods. Finally, an example of observer-based synchronization applied to the proposed chaotic fractional-order system is illustrated.  相似文献   

7.
This paper introduces a system with switching multi-model structure which can generate chaos. Sub-models in this structure are fractional-order linear systems with any desired commensurate order less than 1. It shows that this system is capable of demonstrating chaotic behavior if its parameters and switching rule are suitably chosen. The structure of the proposed system is defined in a general form; consequently various chaotic attractors can be created by this system with different choices of order, parameters and switching rule. Numerical simulations illustrate behavior of the introduced system in some different situations.  相似文献   

8.
In this paper, chaos in a fractional-order neural network system with varying time delays is presented, and chaotic synchronization system with varying time delays is constructed. The stability of constructed synchronization system is analyzed by Laplace transformation theory. In addition, the bifurcation graph of the chaotic system is illustrated. The study results show that the chaos in such fractional-order neural networks with varying time delay can be synchronized, and Washout filter control can be used to reduce the range of coupled parameter.  相似文献   

9.
A fractional-order Qi four-wing chaotic system is present based on the Grunwald-Letnikov denition. The existence of topological horseshoe in a fractional chaotic system is analyzed by utilizing topological horseshoe theory. A Poincare section is properly chosen to obtain the Poincare map which is proved to be semi-conjugate to a 2-shift map, implying that the fractional-order Qi four-wing chaotic system exhibits chaos.  相似文献   

10.
In this paper, dynamics of the fractional-order simplied Lorenz hyperchaotic system is investigated. Modied Adams-Bashforth-Moulton method is applied for numerical simulation. Chaotic regions and periodic windows are identied. Dierent types of motions are shown along the routes to chaos by means of phase portraits, bifurcation diagrams, and the largest Lyapunov exponent. The lowest fractional order to generate chaos is 3.8584. Synchronization between two fractional-order simplied Lorenz hyperchaotic systems is achieved by using active control method. The synchronization performances are studied by changing the fractional order, eigenvalues and eigenvalue standard deviation of the error system.  相似文献   

11.
研究了整数阶分数阶van der pol情绪混沌模型的滑模同步问题,利用分数阶微积分给出了情绪模型的主从系统取得同步的充分条件,研究表明,一定条件下,Van der pol情绪模型的主从系统能够达到同步,数值仿真验证了该方法的可行性.  相似文献   

12.
In this paper via a novel method of discretized continuous-time Kalman filter, the problem of synchronization and cryptography in fractional-order systems has been investigated in presence of noisy environment for process and output signals. The fractional-order Kalman filter equation, applicable for linear systems, and its extension called the extended Kalman filter, which can be used for nonlinear systems, are derived. The result is utilized for chaos synchronization with the aim of cryptography while the transmitter system is fractional-order, and both the transmitter and transmission channel are noisy. The fractional-order stochastic chaotic Chen system is then presented to apply the proposed method for chaotic signal cryptography. The results show the effectiveness of the proposed method.  相似文献   

13.
The knowledge about parameters and order is very important for synchronization of fractional-order chaotic systems. In this article, identification of parameters and order of fractional-order chaotic systems is converted to an optimization problem. Particle swarm optimization algorithm is used to solve this optimization problem. Based on the above parameter identification, synchronization of the fractional-order Lorenz, Chen and a novel system (commensurate or incommensurate order) is derived using active control method. The new fractional-order chaotic system has four-scroll chaotic attractors. The existence and uniqueness of solutions for the new fractional-order system are also investigated theoretically. Simulation results signify the performance of the work.  相似文献   

14.
We study the chaos control and the function projective synchronization of a fractional-order T-system and Lorenz chaotic system using the backstepping method. Based on stability theory, we consider the condition for the local stability of nonlinear three-dimensional commensurate fractional-order system. Using the feedback control method, we control the chaos in the considered fractional-order T-system. We simulate the function projective synchronization between the fractional-order T-system and Lorenz system numerically using MATLAB and depict the results with plots.  相似文献   

15.
This paper deals with the fractional-order Volta’s system. It is based on the concept of chaotic system, where the mathematical model of system contains fractional order derivatives. This system has simple structure and can display a double-scroll attractor. The behavior and stability analysis of the integer-order and the fractional commensurate and non-commensurate order Volta’s system with total order less than 3 which exhibits chaos are presented as well.  相似文献   

16.
The main objective of this study is to investigate and control the chaotic behaviour of fractional-order Coullet system, including the necessary condition for appearance of chaos. An active control technique, in a master–slave structure for synchronization is suggested to control this chaotic system. The stability condition is obtained in both of theoretical analysis and simulation manner. The numerical simulation verifies the performance of the proposed controller.  相似文献   

17.
The chaotic dynamics of a micromechanical resonator with electrostatic forces on both sides are investigated. Using the Melnikov function, an analytical criterion for homoclinic chaos in the form of an inequality is written in terms of the system parameters. Detailed numerical studies including basin of attraction, and bifurcation diagram confirm the analytical prediction and reveal the effect of parametric excitation amplitude on the system transition to chaos. The main result of this paper indicates that it is possible to reduce the electrostatically induced homoclinic and heteroclinic chaos for a range of values of the amplitude and the frequency of the parametric excitation. Different active controllers are applied to suppress the vibration of the micromechanical resonator system. Moreover, a time-varying stiffness is introduced to control the chaotic motion of the considered system. The techniques of phase portraits, time history, and Poincare maps are applied to analyze the periodic and chaotic motions.  相似文献   

18.
This work investigates chaos synchronization between two different fractional-order hyperchaotic system (FOHS)s. A novel FOHS is also proposed in this paper. The Chen FOHS is controlled to be a new FOHS and the Lü FOHS, respectively. The analytical conditions for the synchronization of these pairs of different FOHSs are derived by utilizing Laplace transform. Furthermore, synchronization between two different FOHSs is achieved by utilizing feedback control method in a quite short period and both remain in chaotic states. Numerical simulations are used to verify the theoretical analysis using different values of the fractional-order parameter.  相似文献   

19.
In this paper, an adaptive sliding mode controller for a novel class of fractional-order chaotic systems with uncertainty and external disturbance is proposed to realize chaos control. The bounds of the uncertainty and external disturbance are assumed to be unknown. Appropriate adaptive laws are designed to tackle the uncertainty and external disturbance. In the adaptive sliding mode control (ASMC) strategy, fractional-order derivative is introduced to obtain a novel sliding surface. The adaptive sliding mode controller is shown to guarantee asymptotical stability of the considered fractional-order chaotic systems in the presence of uncertainty and external disturbance. Some numerical simulations demonstrate the effectiveness of the proposed ASMC scheme.  相似文献   

20.
This paper presents a new fractional-order hyperchaotic system. The chaotic behaviors of this system in phase portraits are analyzed by the fractional calculus theory and computer simulations. Numerical results have revealed that hyperchaos does exist in the new fractional-order four-dimensional system with order less than 4 and the lowest order to have hyperchaos in this system is 3.664. The existence of two positive Lyapunov exponents further verifies our results. Furthermore, a novel modified generalized projective synchronization (MGPS) for the fractional-order chaotic systems is proposed based on the stability theory of the fractional-order system, where the states of the drive and response systems are asymptotically synchronized up to a desired scaling matrix. The unpredictability of the scaling factors in projective synchronization can additionally enhance the security of communication. Thus MGPS of the new fractional-order hyperchaotic system is applied to secure communication. Computer simulations are done to verify the proposed methods and the numerical results show that the obtained theoretic results are feasible and efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号