首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mixture of two-dimensional (2D) TiS2 nanoflakes and polyvinylpyrrolidone (PVP) exhibits a nonvolatile, bipolar resistive switching behavior with a low resistance state (LRS)/high resistance state (HRS) current ratio of ~102 in the devices with a flexible Al/TiS2-PVP/indium tin oxide (ITO)/polyethylene terephthalate (PET) structure. The polymer-assistant liquid-phase exfoliation of 2D nanoflakes from TiS2 bulk material is processed in low-boiling solvent. And the fabrication process of these devices is performed entirely at room temperature. Such an energy-saving and scalable production process indicates a huge potential of large-scale industrial application. The AFM and TEM characterizations showed that the exfoliated 2D TiS2 are flakes at micrometer scale with a layer-number of mostly 7 or 8. Both the HRS and the LRS can be kept for more than 104 s. The endurance of devices was obtained over 100 direct current (DC) sweeping cycles with remarkable separations between different resistive states. The distributions of writing (set) and erasing (reset) voltages show that set and reset voltages are small (<2 V). Also, the resistive switching characteristics of the devices are stable during 1000 bending cycles. The switching behavior is explained by the thinning and recovery of Schottky barriers within devices.  相似文献   

2.
《Current Applied Physics》2020,20(3):431-437
Based on the bipolar resistive switching (RS) characteristics of SnO2 films, we have fabricated a new prototypical device with sandwiched structure of Metal/SnO2/fluorine-doped tin oxide (FTO). The SnO2 microspheres film was grown on FTO glass by template-free hydrothermal synthesis, which was evaporated with various commonly used electrodes such as aluminium (Al), silver (Ag), and gold (Au), respectively. Typical self-rectifying resistance switching behaviors were observed for the RS devices with Al and Au electrodes. However, no obvious rectifying resistance switching behavior was observed for the RS device with Ag electrode. Above results were interpreted by considering the different interface barriers between SnO2 and top metal electrodes. Our current studies pave the ways for modulating the self-rectifying resistance switching properties of resistive memory devices by choosing suitable metal electrodes.  相似文献   

3.
《Current Applied Physics》2018,18(1):102-106
The present study reports the resistive switching behaviour in Titanium Dioxide (TiO2) material, with possible implementations in non volatile memory device. The Cu/TiO2/Pt memory device exhibit uniform and stable bipolar resistive switching behaviour. The current-voltage (I-V) analysis shows two discrete resistance states, the High Resistance State (HRS) and the Low Resistance State (LRS). The effect of an additional AlN layer in the resistive memory cell is also investigated. The Cu/TiO2/AlN/Pt device shows a multilevel (tri-state) resistive switching. Multilevel switching is facilitated by ionic and metallic filament formation, and the nature of the formed filaments is confirmed by performing a resistance vs. temperature measurement. The bilayer device shows improved reliability over the single layer device. The formation of high thermal conductive interfacial oxy-nitride (AlON) layer is the main reasons for the enhancement of resistive switching properties in Cu/TiO2/AlN/Pt cell. The performance of device was measured in terms of endurance and retention, which exhibits good endurance over 105 cycles and long retention time of 105 s at 125 °C. The above result suggests the feasibility of Cu/TiO2/AlN/Pt devices for multilevel non volatile ReRAM application.  相似文献   

4.
Bilayer CeO2/TiO2 films with high-k dielectric property were prepared by rf magnetron sputtering technique at room temperature. Effect of annealing treatment on resistive switching (RS) properties of bilayer CeO2/TiO2 films in O2 ambient at different temperature in the range of 350–550 °C was investigated. Our results revealed that the bilayer films had good interfacial property at 500 °C and this annealing temperature is optimum for different RS characteristics. Results showed that bilayer CeO2/TiO2 film perform better uniformity and reliability in resistive switching at intermediate temperature (i.e. 450 °C and 500 °C) instead of low and high annealing temperature (i.e. 350 °C and 550 °C) at which it exhibits poor crystalline structure with more amorphous background. Less Gibbs free energy of TiO2 as compared to CeO2 results in an easier re-oxidation of the filament through the oxygen exchange with TaN electrode. However, the excellent endurance property (>2500 cycles), data retentions (105 s) and good cycle-to-cycle uniformity is observed only in 500 °C annealed devices. The plots of cumulative probability, essential memory parameter, show a good distribution of Set/Reset voltage.  相似文献   

5.
The flexible Ag/TiO2/ITO/PET resistive switching memory is prepared by low-temperature sol-gel method with UV irradiation, and the simple method that combined the advantages of sol-gel method and low temperature can be applied to fabricate high-quality film. The flexible Ag/TiO2/ITO/PET memory device displays good resistive behavior, for instance, the narrow distributions of switching voltages, good cycle endurance, and long retention time. Meanwhile, the multilevel resistance states of the device can be realized by controlling the compliance current or reset voltages, showing the potential of applications in neural networks and high-density storge. In addition, flexibility of the Ag/TiO2/ITO/PET is studied, which exhibit good endurance and retention properties under bending condition. The I–V curves are replotted and fitted for analyzing the conductive mechanism of the device. The fitting results show that SCLC and Ohmic mechanism are main mechanisms of high resistance state and low resistance state respectively. The electrochemical and thermochemical modes are adopted to explain resistive switching behavior. Our results indicate the Ag/TiO2/ITO/PET memory has potential application in wearable and foldable electronics.  相似文献   

6.
We have investigated the bipolar resistive switching of Y0.95Ca0.05MnO3 (YCMO) thin film on Si substrate using pulsed laser deposition. Simulation of Mn L3,2 near-edge X-ray absorption fine structure has been executed by CTM4XAS to corroborate the presence of a mixed-valence state of Mn ions and oxygen vacancies. The charge transport in the film is described by the space charge limited mechanism. Murgatroyd and space charge limited mechanism relations are used to calculate the mobility and other switching parameters at high resistance state. With a decrease in the switching layer (near to positively biased electrode) thickness, better resistive switching was observed. This work indicates that the localized switching thickness and temperature strongly affect the resistive switching of the YCMO film.  相似文献   

7.
Resistive switching mechanism of zirconium oxide-based resistive random access memory (RRAM) devices composed of Cu-doped ZrO2 film sandwiched between an oxidizable electrode and an inert electrode was investigated. The Ag/ZrO2:Cu/Pt RRAM devices with crosspoint structure fabricated by e-beam evaporation and e-beam lithography show reproducible bipolar resistive switching. The linear I?CV relationship of low resistance state (LRS) and the dependence of LRS resistance (R ON) and reset current (I reset) on the set current compliance (I comp) indicate that the observed resistive switching characteristics of the Ag/ZrO2:Cu/Pt device should be ascribed to the formation and annihilation of localized conductive filaments (CFs). The physical origin of CF was further analyzed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). CFs were directly observed by cross-sectional TEM. According to EDS and elemental mapping analysis, the main chemical composition of CF is determined by Ag atoms, coming from the Ag top electrode. On the basis of these experiments, we propose that the set and reset process of the device stem from the electrochemical reactions in the zirconium oxide under different external electrical stimuli.  相似文献   

8.
The bipolar resistive switching mechanisms of a p-type NiO film and n-type TiO2 film were examined using local probe-based measurements. Scanning probe-based current–voltage (IV) sweeps and surface potential/current maps obtained after the application of dc bias suggested that resistive switching is caused mainly by the surface redox reactions involving oxygen ions at the tip/oxide interface. This explanation can be applied generally to both p-type and n-type conducting resistive switching films. The contribution of oxygen migration to resistive switching was also observed indirectly, but only in the cases where the tip was in (quasi-) Ohmic contact with the oxide.  相似文献   

9.
Electrical devices involve different types of diode in prospective electronics is of great importance. In this study, p-type Si surface was covered with thin film of TiO2 dispersion in H2O to construct p-Si/TiO2/Al Schottky barrier diode (D1) and the other one with TiO2 dispersion doped with zirconium to construct p-Si/TiO2-Zr/Al diode (D2) by drop-casting method in the same conditions. Electrical properties of as-prepared diodes and effect of zirconium as a dopant were investigated. Current–voltage (IV) characteristics of these devices were measured at ambient conditions. Some parameters including ideality factor (n), barrier height (ΦB0), series resistance (Rs) and interface state density (Nss) were calculated from IV behaviours of diodes. Structural comparisons were based on SEM and EDX measurements. Experimental results indicated that electrical parameters of p-Si/TiO2/Al Schottky device were influenced by the zirconium dopant in TiO2.  相似文献   

10.
In this paper, we achieve the resistive switching (RS) polarity from unipolar to bipolar in a simple Al/ZnO x /Al structure by moderating the oxygen content in the ZnO sputtering process. In a pure Ar sputtering, Al/ZnO x /Al shows unipolar behavior, as oxygen partial pressure increases, the RS polarity changes to bipolar, and the switch current decreases by about five orders of magnitude. The current transport properties of unipolar device show ohmic behavior under both high resistance (HRS) and low resistance states (LRS), but the bipolar device shows Schottky barrier modulated current transport properties. We study the defect types in the unipolar and bipolar devices through photoluminescence (PL) spectra. The PL results show that the interstitial zinc (Zni) and interstitial oxygen (Oi) are dominant in unipolar and bipolar devices, respectively. We attribute this phenomenon to Zni and Oi playing important role in unipolar (URS) and bipolar resistive switching (BRS), respectively.  相似文献   

11.
We report that fully transparent resistive random access memory(TRRAM) devices based on ITO/TiO2/ITO sandwich structure,which are prepared by the method of RF magnetron sputtering,exhibit excellent switching stability.In the visible region(400-800 nm in wavelength) the TRRAM device has a transmittance of more than 80%.The fabricated TRRAM device shows a bipolar resistance switching behaviour at low voltage,while the retention test and rewrite cycles of more than 300,000 indicate the enhancement of switching capability.The mechanism of resistance switching is further explained by the forming and rupture processes of the filament in the TiO 2 layer with the help of more oxygen vacancies which are provided by the transparent ITO electrodes.  相似文献   

12.
In this study, we report the observation of memory effect in TiO2–GO nanocomposite films. Electrical properties of the prepared Al/TiO2–GO composite/ITO devices have shown stable and reproducible bipolar resistive switching behavior. The TiO2–GO composite films were prepared using solution method by spin coating technique. Observed results have shown that the inclusion of GO in the TiO2 matrix have exhibited a significant role in the resistive switching mechanism. The device has exhibited an excellent memory characteristic with low operating voltages, good endurance up to 105 cycles and long retention time more than 5×103 s5×103 s.  相似文献   

13.
在SiO2玻璃衬底上用脉冲激光沉积(PLD)技术,分别沉积Ti和Ti/Al膜,经电化学阳极氧化成功制备了多孔TiO2/SiO2和TiO2/Al/SiO2纳米复合结构. 其中TiO2薄膜上的微孔阵列高度有序,分布均匀. 实验研究了Al过渡层对多孔TiO2薄膜光吸收特性的影响. 结果表明:无Al过渡层的多孔TiO2薄膜其紫外吸收峰在27 关键词: 2薄膜')" href="#">多孔TiO2薄膜 阳极氧化 紫外光吸收  相似文献   

14.
在SiO2玻璃衬底上用脉冲激光沉积(PLD)技术,分别沉积Ti和Ti/Al膜,经电化学阳极氧化成功制备了多孔TiO2/SiO2和TiO2/Al/SiO2纳米复合结构. 其中TiO2薄膜上的微孔阵列高度有序,分布均匀. 实验研究了Al过渡层对多孔TiO2薄膜光吸收特性的影响. 结果表明:无Al过渡层的多孔TiO2薄膜其紫外吸收峰在27  相似文献   

15.
《Current Applied Physics》2015,15(4):441-445
In this study, the resistive switching performance of amorphous indium–gallium–zinc oxide (a-IGZO) resistive switching random-access memory (ReRAM) was improved by inserting a thin silicon oxide layer between silver (Ag) top electrode and a-IGZO resistive switching layer. Compared with the single a-IGZO layer structure, the SiO2/a-IGZO bi-layer structure exhibits the higher On/Off resistance ratio larger than 103, and the lower operation power using a smaller SET compliance current. In addition, good endurance and excellent retention characteristics were achieved. Furthermore, multilevel resistance states are obtained through adjusting SET compliance current and RESET stop voltage, which shows a promise for high-performance nonvolatile multilevel memory application.  相似文献   

16.
《Current Applied Physics》2019,19(11):1286-1295
We report the coexistence of resistive switching and magnetism modulation in the Pt/Co3O4/Pt devices, where the effects of thermal annealing and film thickness on the resistive and magnetization switching were investigated. The sol-gel derived nanocrystalline Co3O4 thin films obtained crack-free surface and crystallized cubic spinel structure. The 110 nm Co3O4 film based device annealed at 600 °C exhibited optimum resistive switching parameters. From I–V curves fitting and temperature dependent resistance, the conduction mechanism in the high-voltage region of high resistance state was dominated by Schottky emission. Magnetization-magnetic field loops demonstrated the ferromagnetic behaviors of the Co3O4 thin films. Multilevel saturation magnetization of the Co3O4 thin films can be easily realized by tuning the resistance states. Physical resistive switching mechanism can be attributed to the rejuvenation and annihilation of conductive filament consisting of oxygen vacancies. Results suggest that Pt/Co3O4/Pt device shows promising applications in the multifunctional electromagnetic integrated devices.  相似文献   

17.
Pt/TiO2/TiN device with the amorphous TiO2 film grown at room temperature under an oxygen partial pressure of 1.0 mTorr showed reliable bipolar switching behavior. During the electroforming process, a large number of oxygen vacancies formed in the TiO2 film and accumulated at the Pt/TiO2 interface. The barrier height of the Schottky contact of the Pt/TiO2 interface was reduced owing to the presence of these oxygen vacancies, resulting in the low-resistance state (LRS). Moreover, oxygen ions diffused into the TiN electrode during the electroforming and set processes. On the other hand, the oxygen ions in the TiN electrode diffused out and reacted with oxygen vacancies in the TiO2 film during the reset process, and the device changed from the LRS to the high-resistance state (HRS). Conduction in the LRS and HRS can be attributed to Ohmic conduction and the trap controlled space charged limited mechanism, respectively.  相似文献   

18.
采用氧化硅材料构建了Cu/SiOx/Al的三明治结构阻变存储器件.用半导体参数分析仪对其阻变特性进行测量,结果表明其具有明显的阻变特性,并且通过调节限制电流,得到了四个稳定的阻态,各相邻阻态的电阻比大于10,并且具有良好的数据保持能力.在不同温度条件下对各个阻态进行电学测试及拟合,明确了不同阻态的电子传输机理不尽相同:阻态1和阻态2为欧姆传导机制,阻态3为P-F(Pool-Frenkel)发射机制,阻态4为肖特基发射机制.根据电子传输机制,建立了铜细丝导电模型并对Cu/SiOx/Al阻变存储器件各个阻态的电致阻变机制进行解释.  相似文献   

19.
《Current Applied Physics》2014,14(3):462-466
Resistive switching characteristics of solution-processed high-k thin films (HfOx and TaOx) were investigated for ReRAM applications. The thickness of solution-processed high-k thin films can be easily controlled by simple spin coating. We optimized the critical thickness of solution-processed HfOx and TaOx thin films, for reliable ReRAM operations. A similar bipolar resistive switching behavior was observed from both solution-processed and sputter-processed HfOx films. Furthermore, it was found that the solution-processed HfOx and TaOx films have a uniform resistive switching characteristic. The dominant conduction of these solution-processed films is described by Ohmic conduction in the low-resistance state. On the other hand, Ohmic conduction at low voltage and Poole–Frenkel emission at high voltage dominate in the high-resistance state. It was verified that the solution-processed HfOx and TaOx films have superior endurance and retention characteristics. Therefore, ReRAM devices based on solution-processed high-k materials are expected to be a promising candidate, for usage of resistive memory in glass substrate or flexible substrate based electronic devices.  相似文献   

20.
The I-V characteristics of In2O3:SnO2/TiO2/In2O3:SnO2 junctions with different interracial barriers are inves- tigated by comparing experiments. A two-step resistance switching process is found for samples with two interfacial barriers produced by specific thermal treatment on the interfaces. The nonsynchronous occurrence of conducting filament formation through the oxide bulk and the reduction in the interracial barrier due to the migration of oxygen vacancies under the electric field is supposed to explain the two-step resistive switching process. The unique switching properties of the device, based on interracial barrier engineering, could be exploited for novel applications in nonvolatile memory devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号