首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is presented to prepare nanocrystalline alpha-Zn(2)SiO(4) with the smallest crystal size reported so far for this system. Our approach combines the advantages of organometallic single-source precursor routes with aerosol processing techniques. The chemical design of the precursor enables the preferential formation of pure zinc silicates. Since gas-phase synthesis reduces intermolecular processes, and keeps the particles small, zinc silicate was synthesized from the volatile organometallic precursor [[MeZnOSiMe(3)](4)], possessing a Zn-methyl- and O-silyl-substituted Zn(4)O(4)-heterocubane framework (cubane), under oxidizing conditions, using the chemical vapor synthesis (CVS) method. The products obtained under different process conditions and their structural evolution after sintering were investigated by using various analytical techniques (powder X-ray diffraction, transmission electron microscopy, EDX analysis, solid-state NMR, IR, Raman, and UV/Vis spectroscopy). The deposited aerosol obtained first (processing temperature 750 degrees C) was amorphous, and contained agglomerates with primary particles of 12 nm in size. These primary particles can be described by a [Zn-O-Si] phase without long-range order. The deposit obtained at 900 degrees C contained particles with embedded nanocrystallites (3-5 nm) of beta-Zn(2)SiO(4), Zn(1.7)SiO(4), and ZnO in an amorphous matrix. On further ageing, the as-deposited particles obtained at 900 degrees C form alpha-Zn(2)SiO(4) imbedded in amorphous SiO(2). The crystallite sizes and primary particle sizes in the formed alpha-Zn(2)SiO(4) were found to be below approximately 50 nm and mainly spherical in morphology. A gas-phase mechanism for the particle formation is proposed. In addition, the solid-state reactions of the same precursor were studied in detail to investigate the fundamental differences between a gas-phase and a solid-state synthesis route.  相似文献   

2.
The sol-emulsion-gel method is used for the preparation of about 5-7 nm size Eu2O3 doped and coated Y2SiO5 nanoparticles at 1300 degrees C. Here, we report the role of surface coating, dopant concentration and temperature of heating on the modification of crystal structure and the photoluminescence properties of Y2SiO5:Eu3+ nanocrystals. It is found that photoluminescence properties are sensitive to the crystal structure which is again controlled by surface coating, concentration and heating temperature. The decay times are 0.76, 1.14, 1.23 and 1.40 ms for 0.25, 0.5, 1.0 and 2.5 mol% Eu2O3 doped Y2SiO5 nanocrystals prepared at 1100 degrees C (X1-Y2SiO5). However, in X2-Y2SiO5 crystal phase (at 1300 degrees C) the average decay times are 1.05, 1.35, 1.55 and 1.60 ms for 0.25, 0.5, 1.0 and 2.5 mol% Eu2O3 doped Y2SiO5 nanocrystals, indicating the photoluminescence properties depend on both the crystal structure and the concentration of ions. The emission intensity of the peak at 612 nm (5D0-->7F2) of the Eu3+-ions is found to be sensitive to the doping and surface coating of Y2SiO5 nanocrystals. The decay times are 1.55 and 1.70 ms for 1300 degrees C heated 1.0 mol% Eu2O3 doped and coated Y2SiO5 nanocrystals, respectively. Our analysis suggests that the site symmetry of ions plays a most important role in the modification of radiative relaxation mechanisms and as a result on the overall photoluminescence properties.  相似文献   

3.
溶胶-凝胶法制备镶嵌在SiO2玻璃中的InAs纳米晶   总被引:3,自引:0,他引:3  
以As2O3,InCl3·4H2O和正硅酸乙酯为原料,通过水解、缩聚制备了xIn2O3-xAs2O3-100SiO2(x=0.5~7.5)凝胶,在氧气中加热到450℃对凝胶热处理使其转化成凝胶玻璃,再在200~500℃与氢气反应,结果在SiO2凝胶玻璃中形成了立方相InAs,利用XRD测试了InAs纳米颗粒的大小、发现随着反应温度的升高及掺杂量的增加,InAs纳米颗粒粒径从6增大到29nm,电子衍射表明凝胶玻璃中的InAs纳米颗粒为多晶结构。  相似文献   

4.
The ordering of dodecyl-chain self-assembled monolayers (SAM) on different nanoscopic surfaces was investigated by FT-IR studies. As model systems plane-crystal-shaped ZrO(2) nanoparticles and spherical SiO(2) nanoparticles were examined. The type of capping agent was chosen dependent on the substrate, therefore dodecylphosphonic acid and octadecylphosphonic acid were used for ZrO(2) and dodecyltrimethoxysilane for SiO(2) samples. The plane ZrO(2) nanocrystals yielded more ordered alkyl-chain structures whereas spherical SiO(2) nanoparticles showed significantly lower alkyl-chain ordering. Submicron-sized silica spheres revealed a significantly higher alkyl chain ordering, comparable to an analogously prepared SAM on a non-curved plane oxidized Si-wafer. In the case of ZrO(2) nanocrystals an intense alkyl-chain alignment could be disturbed by decreasing the grafting density from the maximum of 2.1 molecules/nm(2) through the variation of coupling agent concentration to lower values. Furthermore, the co-adsorption of a different coupling agent, such as phenylphosphonic acid for ZrO(2) and phenyltrimethoxysilane for SiO(2), resulted in a significantly lower alkyl-chain ordering for ZrO(2) plane crystals and for large SiO(2) spherical particles at high grafting density. An increasing amount of order-disturbing molecules leads to a gradual decrease in alkyl-chain alignment on the surface of the inorganic nanoparticles. In the case of the ZrO(2) nanoparticle system it is shown via dynamic light scattering (DLS) that the mixed monolayer formation on the particle surface impacts the dispersion quality in organic solvents such as n-hexane.  相似文献   

5.
The synthesis and characterization of new organosilicon derivatives of N(3)P(3)Cl(6), N(3)P(3)[NH(CH(2))(3)Si(OEt)(3)](6) (1), N(3)P(3)[NH(CH(2))(3)Si(OEt)(3)](3)[NCH(3)(CH(2))(3)CN](3) (2), and N(3)P(3)[NH(CH(2))(3)Si(OEt)(3)](3)[HOC(6)H(4)(CH(2))CN](3) (3) are reported. Pyrolysis of 1, 2, and 3 in air and at several temperatures results in nanostructured materials whose composition and morphology depend on the temperature of pyrolysis and the substituents of the phosphazenes ring. The products stem from the reaction of SiO(2) with P(2)O(5), leading to either crystalline Si(5)(PO(4))(6)O, SiP(2)O(7) or an amorphous phase as the glass Si(5)(PO(4))(6)O/3SiO(2).2P(2)O(5), depending on the temperature and nature of the trimer precursors. From 1 at 800 degrees C, core-shell microspheres of SiO(2) coated with Si(5)(PO(4))(6)O are obtained, while in other cases, mesoporous or dense structures are observed. Atomic force microscopy examination after deposition of the materials on monocrystalline silicon wafers evidences morphology strongly dependent on the precursors. Isolated islands of size approximately 9 nm are observed from 1, whereas dense nanostructures with a mean height of 13 nm are formed from 3. Brunauer-Emmett-Teller measurements show mesoporous materials with low surface areas. The proposed growth mechanism involves the formation of cross-linking structures and of vacancies by carbonization of the organic matter, where the silicon compounds nucleate. Thus, for the first time, unique silicon nanostructured materials are obtained from cyclic phosphazenes containing silicon.  相似文献   

6.
杨海峰  闫妍  张福强  陈颖  屠波  赵东元 《化学学报》2004,62(21):2177-2181
以高度有序的介观结构SiO2/CdO纳米复合物为前驱体,在硒源或硫源存在的还原性条件下,利用原位水热反应,合成了介观结构SiO2/CdSe及SiO2/CdS纳米复合物,除去SiO2后,得到半导体CdSe及CdS纳米晶.通过X射线衍射(XRD),高分辨率透射电镜(HRTEM),X射线能散射谱(EDX)及选区电子衍射(SAED)等手段对产物进行了组成和结构表征.结果表明,介观结构SiO2主体材料在合成过程中起到了一定的形貌和尺寸限制作用,得到的CdSe和CdS均为直径在8 nm左右的类球形六方相纳米晶.  相似文献   

7.
The complex Rh(cod)(sulfos) (Rh(I); sulfos = (-)O(3)S(C(6)H(4))CH(2)C(CH(2)PPh(2))(3); cod = cycloocta-1,5-diene), either free or supported on silica, does not catalyze the hydrogenation of benzene in either homogeneous or heterogeneous phase. However, when silica contains supported Pd metal nanoparticles (Pd(0)/SiO(2)), a hybrid catalyst (Rh(I)-Pd(0)/SiO(2)) is formed that hydrogenates benzene 4 times faster than does Pd(0)/SiO(2) alone. EXAFS and DRIFT measurements of in situ and ex situ prepared samples, batch catalytic reactions under different conditions, deuterium labeling experiments, and model organometallic studies, taken together, have shown that the rhodium single sites and the palladium nanoparticles cooperate with each other in promoting the hydrogenation of benzene through the formation of a unique entity throughout the catalytic cycle. Besides decreasing the extent of cyclohexa-1,3-diene disproportionation at palladium, the combined action of the two metals activates the arene so as to allow the rhodium sites to enter the catalytic cycle and speed up the overall hydrogenation process by rapidly reducing benzene to cyclohexa-1,3-diene.  相似文献   

8.
The thermal annealing of silica nanospheres encapsulating Fe(3)O(4) nanocrystals and Pd(2+) complexes led to the formation of heterodimers consisting of Fe(3)O(4) and PdO nanoparticles encapsulated in a silica shell, allowing for their controllable transformation into either Fe(3)O(4)/Pd heterodimers or FePd alloy nanocrystals through a solid state reduction process.  相似文献   

9.
In this paper, surface plasmon resonance biosensors based on magnetic core/shell Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were developed for immunoassay. With Fe(3)O(4) and Fe(3)O(4)/Ag nanoparticles being used as seeding materials, Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were formed by hydrolysis of tetraethyl orthosilicate. The aldehyde group functionalized magnetic nanoparticles provide organic functionality for bioconjugation. The products were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), FTIR and UV-vis absorption spectrometry. The magnetic nanoparticles possess the unique superparamagnetism property, exceptional optical properties and good compatibilities, and could be used as immobilization matrix for goat anti-rabbit IgG. The magnetic nanoparticles can be easily immobilized on the surface of SPR biosensor chip by a magnetic pillar. The effects of Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles on the sensitivity of SPR biosensors were also investigated. As a result, the SPR biosensors based on Fe(3)O(4)/SiO(2) nanoparticles and Fe(3)O(4)/Ag/SiO(2) nanoparticles exhibit a response for rabbit IgG in the concentration range of 1.25-20.00 μg ml(-1) and 0.30-20.00 μg ml(-1), respectively.  相似文献   

10.
Examination of the catalysts recovered in the N,N-dihexylcarbodiimide-palladium nanoparticle composite catalyzed Suzuki cross-coupling reactions revealed that the metal nanoparticles transformed gradually from spherical-shape to larger needle-shaped crystals. Two types of Ostwald ripening processes were observed. One involves rapid aggregation of the incipient nanoparticle catalyst (2-5 nm) into blackberry-like assemblies (100-200 nm), which is accompanied with the much slower dissolution of small crystals or amorphous nanoparticles and the formation of larger needle-shaped crystals. The observed structural changes provided new insights into the durability of the polymer nanoparticle composite catalyst.  相似文献   

11.
Exposure to the high energy electron beam of a TEM changes the morphology of amorphous Fe oxide nanoparticles from solid spheres to hollow shells. Amorphous Fe oxide nanoparticles prepared via high-temperature methods using hexadecylamine and trioctylphosphine oxide surfactants were compared to crystalline gamma-Fe2O3 particles of similar size. Both sets of particles are fully characterized via SQUID magnetometry, X-ray powder diffraction, BET surface analysis, EPR spectroscopy, high-resolution transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Time-resolved TEM images reveal that the amorphous Fe oxide particles evolve from solid spheres into hollow shells in <2 min, whereas crystalline gamma-Fe2O3 are unaffected by the electron beam. The resulting nanocrystalline Fe oxide shells bear striking resemblance to core-shell nanocrystals, but are a result of a morphology change attributed to restructuring of particle voids and defects induced by quasi-melting in the TEM. These results thus imply that caution is necessary when using TEM to analyze nanoparticle core-shell and heterostructured nanoparticles.  相似文献   

12.
Gao S  Xie Y  Zhu L  Tian X 《Inorganic chemistry》2003,42(17):5442-5447
The thermostability and reactivity of GaP nanocrystals in O(2) were investigated using the thermogravimetric analysis (TGA), differential thermal analysis (DTA), powder X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis techniques. alpha-Ga(2)O(3) nanoparticles, nano-hollow-particles, or nanorods and nanotubes can be separately obtained from the oxidation of nanocrystalline GaP at 400 degrees C for 30 min in dry O(2) atmosphere via manipulating different heating rates. Transmission electron microscopy (TEM) and energy-dispersive X-ray spectrometry (EDX) analysis showed that the products were all alpha-Ga(2)O(3) but with different morphologies when different heating rates were applied. The formation mechanisms of the different morphological alpha-Ga(2)O(3) nanocrystals were discussed.  相似文献   

13.
The surfaces of TiO2 nanocrystals were modified with amorphous aluminum-oxide layers using a surface sol-gel process to control the interaction between supports and metal particles. Ultrastable Au nanocatalysts were prepared by the deposition of Au nanoparticles on the surface-modified TiO2 nanocrystals using a deposition-precipitation (DP) method. The TEM analysis showed that the Au nanoparticles on the surface-modified nanocrystal supports were highly stable with a sinter-resistant capability during high-temperature calcination. The HRTEM analysis revealed that the surface of the TiO2 nanocrystals was covered by an amorphous aluminum-oxide layer and the Au nanoparticles were primarily anchored to this amorphous layer. This amorphous aluminum-oxide layer played an extremely important role in the stabilization of the supported Au nanoparticles without affecting catalytic activities. The surface modification of nanocrystal supports highlights new opportunities in tailoring the stability and activity of supported nanocatalyst systems.  相似文献   

14.
Structural characteristics of nanosized ceria-silica, ceria-titania, and ceria-zirconia mixed oxide catalysts have been investigated using X-ray diffraction (XRD), Raman spectroscopy, BET surface area, thermogravimetry, and high-resolution transmission electron microscopy (HREM). The effect of support oxides on the crystal modification of ceria cubic lattice was mainly focused. The investigated oxides were obtained by soft chemical routes with ultrahighly dilute solutions and were subjected to thermal treatments from 773 to 1073 K. The XRD results suggest that the CeO(2)-SiO(2) sample primarily consists of nanocrystalline CeO(2) on the amorphous SiO(2) surface. Both crystalline CeO(2) and TiO(2) anatase phases were noted in the case of CeO(2)-TiO(2) sample. Formation of cubic Ce(0.75)Zr(0.25)O(2) and Ce(0.6)Zr(0.4)O(2) (at 1073 K) were observed in the case of the CeO(2)-ZrO(2) sample. Raman measurements disclose the fluorite structure of ceria and the presence of oxygen vacancies/Ce(3+). The HREM results reveal well-dispersed CeO(2) nanocrystals over the amorphous SiO(2) matrix in the cases of CeO(2)-SiO(2), isolated CeO(2), and TiO(2) (anatase) nanocrystals, some overlapping regions in the case of CeO(2)-TiO(2), and nanosized CeO(2) and Ce-Zr oxides in the case of CeO(2)-ZrO(2) sample. The exact structural features of these crystals as determined by digital diffraction analysis of HREM experimental images reveal that the CeO(2) is mainly in cubic fluorite geometry. The oxygen storage capacity (OSC) as determined by thermogravimetry reveals that the OSC of the mixed oxide systems is more than that of pure CeO(2) and is system dependent.  相似文献   

15.
Aggregates (80 nm) of sodalite nanocrystals with crystallite sizes ranging from 20 to 40 nm have been synthesized from a sodium aluminosilicate solution at low temperature, without adding any organic additives, while paying attention to the key factors for the synthesis of nanosized zeolite crystals. The physical properties of nanosized sodalite crystals were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, 29Si solid-state magic-angle spinning (MAS) NMR, and N2 adsorption. As expected, the external surface area of nanosized sodalite crystals is significantly increased compared with that of microsized sodalite crystals. The size of synthesized sodalite crystals can be controlled from 20 nm to 10 microm. It is found that the preparation of a homogeneous aluminosilicate solution followed by the formation of an aluminosilicate hard gel by adjusting the initial composition, for example, SiO2/Al2O3 and Na2O/H2O ratios, is critical for synthesis.  相似文献   

16.
One- and two-dimensional refocused MAS-J-INEPT NMR experiments in the solid state (through-bond polarization transfer) involving the highly abundant 31P spin and the rare 29Si spin are described for the crystalline silicophosphate phase Si5O(PO4)6 and complex mixtures of SiP2O7 polymorphs. The evaluation of the 2JP-O-Si coupling constants for all 29Si sites is obtained by the careful analysis of the INEPT build-up curves under fast MAS. The results are in agreement with the crystallographic data, taking into account the various J coupling paths. The efficiency of the experiment is demonstrated by its application to more complex systems such as silicophosphate amorphous gels (obtained by the sol-gel process).  相似文献   

17.
Grazing incidence X-ray diffraction reveals that a pentacene monolayer, grown on an amorphous SiO2 substrate that is commonly used as a dielectric layer in organic thin film transistors (OTFTs), is crystalline. A preliminary energy-minimized model of the monolayer, based on the GIXD data, reveals that the pentacene molecules adopt a herringbone arrangement with their long axes tilted slightly from the substrate normal. Although this arrangement resembles the general packing features of the (001) layer in single crystals of bulk pentacene, the monolayer lattice parameters and crystal structure differ from those of the bulk. Because carrier transport in pentacene OTFTs is presumed to occur in the semiconductor layers near the dielectric interface, the discovery of a crystalline monolayer structure on amorphous SiO2 has important implications for transport in OTFTs.  相似文献   

18.
The transition metal compounds Pd(OAc)2, RhCl3·4H2O and RuCl3 · nH2O were adsorbed onto the nanoporous silica polyamine composite (SPC) particles (150–250 µm), WP‐1 [poly(ethyleneimine) on amorphous silica], BP‐1 [poly(allylamine) on amorphous silica], WP‐2 (WP‐1 modified with chloroacetic acid) and BP‐2 (BP‐1 modified with chloroacetic acid). Inductively coupled plasma‐atomic emission spectrometry analysis of the dried samples after digestion indicated metal loadings of 0.4–1.2 mmol g?1 except for RhCl3·4H2O on BP‐2 which showed a metal loading of only 0.1 mmol g?1. The metal loaded composites were then screened as hydrogenation catalysts for the reduction of 1‐octene, 1‐decene, 1‐hexene and 1, 3‐cyclohexadiene at a hydrogen pressure of 5 atm in the temperature range of 50–90 °C. All 12 combinations of SPC and transition metal compound proved active for the reduction of the terminal olefins, but isomerization to internal alkenes was competitive in all cases. Under these conditions, selective hydrogenation of 1,3‐cyclohexadiene to cyclohexene was observed with some of the catalysts. Turnover frequencies were estimated for the hydrogenation reactions based on the metal loading and were in some cases comparable to more conventional heterogeneous hydrogenation catalysts. Examination of the catalysts before and after reaction with X‐ray photoelectron spectroscopy and transmission electron microscopy revealed that, in the cases of Pd(OAc)2 on WP‐2, BP‐1 and BP‐2, conversion of the surface‐ligand bound metal ions to metal nano‐particles occurs. This was not the case for Pd(OAc)2 on WP‐1 or for RuCl3 · nH2O and RhCl3· 4H2O on all four composites. The overall results are discussed in terms of differences in metal ion coordination modes for the composite transition‐metal combinations. Suggested ligand interactions are supported by solid state CPMAS 13C NMR analyses and by analogy with previous structural investigations of metal binding modes on these composite materials. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Pt on mesostructured CeO(2) nanoparticles embedded within ultrathin layers of highly structured SiO(2) binder shows highest activity reported with 80% selectivity for the chemoselective hydrogenation of crotonaldehyde. Characterization by transmission electron microscopy (TEM), CO adsorption, and X-ray photoelectron spectroscopy (XPS) show the presence of small Pt metal particles, preferentially located on CeO(2) (70%) together with the formation of Pt-CeO(2-x) sites at the interface between Pt and CeO(2) (4 nm) nanoparticles. These sites are able to polarize the carbonyl group and facilitate the selective hydrogenation of this with respect to the double bond.  相似文献   

20.
This work demonstrates a new strategy for controlling the evolution of twin defects in metal nanocrystals by simply following thermodynamic principles. With Ag nanocrystals supported on amorphous SiO2 as a typical example, we establish that twin defects can be rationally generated by equilibrating nanoparticles of different sizes through heating and then cooling. We validate that Ag nanocrystals with icosahedral, decahedral, and single‐crystal structures are favored at sizes below 7 nm, between 7 and 11 nm, and greater than 11 nm, respectively. This trend is then rationalized by computational studies based on density functional theory and molecular dynamics, which show that the excess free energy for the three equilibrium structures correlate strongly with particle size. This work not only highlights the importance of thermodynamic control but also adds another synthetic method to the ever‐expanding toolbox used for generating metal nanocrystals with desired properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号