首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
双模量材料是典型的拉压弹性模量不同的材料,在均匀外载荷作用下,双模量面板泡沫铝芯圆形层合板相当于三种不同材料组成的层合板。采用弹性理论建立了双模量面板泡沫铝芯圆形层合板在均布载荷作用下的静力平衡方程,利用该静力平衡方程确定了层合板的中性面位置。在此基础上建立了双模量面板泡沫铝芯圆形层合板的大挠度弯曲微分方程组,求得了层合板中心挠度与均布载荷的关系式。该方法计算结果与有限元计算结果的最大误差仅为3.8%,这说明该方法是可靠的。算例分析表明不考虑面板拉压弹性模量相异时其计算结果与实际情况相差较大,超过了工程上所允许的计算误差5%。所以,在计算双模量面板泡沫铝芯圆形层合板的非线性弯曲时,不宜采用相同弹性模量弹性理论,而应该采用拉压弹性模量不同的弹性理论。  相似文献   

2.
已有文献在空心及PMI泡沫填充铝波纹夹芯梁受泡沫铝块冲击作用的实验中观察到:泡沫填充夹芯梁在相同的载荷下,比相同重量的空心夹芯梁产生更大的后面板中点塑性永久位移。为了分析实验中观察到的现象并揭示其中的力学机理,本文基于商用有限元软件Abaqus/Explicit对空心及泡沫填充铝波纹夹芯梁在冲击下的动态响应进行了数值模拟研究;通过考察芯体与面板间理想连接和脱粘两种情况,研究了界面粘结性能对夹芯梁抗冲击性能的影响。结果表明,实验结果介于这两种情况的模拟结果之间。通过分析空心及泡沫填充夹芯梁不同子结构的塑性吸能差异,发现填充泡沫后夹芯梁的前面板吸能相对于空心夹芯梁有所减小,而后面板的吸能则相对增加。对两种夹芯梁前后面板中点速度的研究表明,由于填充泡沫的波纹芯体对前后面板的支撑作用增大,减缓了前面板的变形并加剧了后面板的变形,因此通过填充泡沫可以减小夹芯梁前面板的变形和撕裂,然而会增大后面板的塑性永久位移。  相似文献   

3.
应用一级轻气炮驱动泡沫铝弹丸高速撞击加载技术,对实心钢板以及前/后面板为Q235钢板、芯层分别为铝基复合泡沫和普通泡沫铝的夹层板结构,在脉冲载荷作用下的动态力学响应进行实验研究。结果表明:泡沫铝子弹高速撞击靶板可近似模拟爆炸载荷效果;铝基复合泡沫夹层板的变形分为芯层压缩和整体变形两个阶段;与其他靶板相比,铝基复合泡沫夹层板的抗冲击性能最优。基于实验研究,应用LS-DYNA非线性动力有限元软件,对泡沫铝夹层板的动态响应进行数值模拟。结果表明:泡沫铝子弹的长度和初始速度对子弹与夹层板之间的接触作用力影响显著,并且呈线性关系。泡沫芯层强度对等质量及等厚度夹层板的抗冲击性能均有显著影响,夹层板中心挠度对前、后面板的厚度匹配较为敏感,在临界范围内,若背板厚度大于面板厚度,可减小夹层板的最终挠度。夹层板面板宜采用刚度较低、延性好、拉伸破坏应变较大的金属材料。  相似文献   

4.
对模量泡沫铝芯夹层梁的固有振动问题进行了研究。利用双模量的材料应力-应变方程,推导出了双模量材料剪切弹性模量计算公式,证明了双模量梁中性轴位置不受作用在梁上的横向载荷的影响。在考虑剪切变形的基础上,建立了双模量泡沫铝芯夹层梁的强迫振动控制方程,推导出了双模量泡沫铝芯夹层梁固有振动问题的振型函数及固有频率计算公式,并分析了剪切变形及泡沫铝芯夹层的拉压弹性模量对双模量泡沫铝芯夹层梁固有振动频率的影响。研究表明:泡沫铝芯夹层梁固有振动时,其固有振动波形是不连续的,奇数波型与偶数波型之间存在间断点;剪切变形及泡沫铝芯夹层的拉压弹性模量对双模量泡沫铝芯夹层梁固有振动的影响是不能忽略的。  相似文献   

5.
论文选取磁悬浮列车车身所用的由铝面板与聚甲基苯丙酰亚胺(PMI)聚合物泡沫芯层所组成的轻质夹层复合材料为研究对象,对夹层结构在室温下进行静态强度测试和进行以位移为控制变量的疲劳损伤演化试验,探讨分析了PMI泡沫夹层结构在交变位移控制下的疲劳性能和破坏行为.给出了PMI泡沫夹层结构在静态载荷作用下的力学性能参数.参考静态试验结果加载适当的位移载荷进行疲劳试验,发现在位移控制模式下,夹层结构的疲劳损伤过程和破坏模式明显区别于载荷控制模式.当最大控制位移较小时破坏形式为面板与泡沫层脱离;位移较大时为面板断裂和泡沫芯层塌陷.通过引入载荷的变化作为损伤参量建立了位移控制模式下损伤演变公式,并对两种模式的破坏行为进行了较好的预测.  相似文献   

6.
考虑剪切效应,利用切比雪夫多项式构造严格满足表面切应力边界条件的轴向位移表达式,建立了短梁弯曲问题的新理论.利用奇异函数把作用在短梁上的复杂外载荷表示为分布载荷,推导出了短梁弯曲时的截面正应力公式及挠曲线表达式.把采用切比雪夫多项式推导出短梁的弯曲计算公式计算结果与弹性理论计算结果进行比较,可知该方法的计算精度较高.研究结果表明:在复杂外载荷作用下,当长高比小于等于6时,剪切变形对梁的弯曲挠度影响较大,而当长高比小于3时,剪切变形对梁的弯曲应力影响较大;因此建议采用切比雪夫多项式方法给出的挠度表达式、弯曲应力进行计算,因为切比雪夫多项式方法不但给出了复杂外载荷作用下梁截面挠度、弯曲应力的计算通式,而且该方法具有计算过程简便、精度高的优点.  相似文献   

7.
为了研究重复冲击载荷作用下泡沫金属夹芯梁的动态响应,采用Abaqus数值仿真软件,基于可压碎泡沫模型(crushable foam),建立了泡沫金属夹芯梁遭受楔形质量块冲击的有限元模型。通过将仿真获得的夹芯梁上下面板最终挠度与重复冲击实验结果进行对比,验证仿真方法的准确性。在此基础之上,分析了泡沫金属夹芯梁在楔形质量块重复冲击作用下的变形模式、加卸载过程以及能量耗散特性。结果表明,在重复冲击载荷作用下,夹芯梁的变形不断累积,上面板主要出现局部凹陷和整体弯曲,而芯层则是局部压缩,下面板表现为整体弯曲。在重复加卸载过程中,加卸载刚度随着冲击次数的增加而增大。随着冲击次数的增加,上面板和芯层的能量吸收增量不断减小,而下面板的能量吸收增量不断增加,且最终均趋于稳定。泡沫金属夹芯梁的塑性变形能增量不断减小,而回弹系数随着冲击次数逐渐增加,最后趋于稳定值。  相似文献   

8.
应用泡沫金属子弹撞击加载的方式研究了固支泡沫铝夹芯梁和等质量实体梁的塑性动力响应。 采用激光测速装置和位移传感器测量了泡沫子弹的撞击速度和后面板中心点的位移-时间曲线,研究了加载 冲量、面板厚度和芯层厚度对夹芯梁抗冲击性能的影响。给出了泡沫铝夹芯梁的变形与失效模式,实验结果 表明结构响应对夹芯结构配置比较敏感,后面板中心点的残余变形与加载冲量、面板厚度呈线性关系。与等 质量实体梁的比较表明,泡沫铝夹芯梁具有更好的抗冲击能力。实验结果对多孔金属夹芯结构的优化设计具 有一定的参考价值。  相似文献   

9.
通过实验、理论和数值模拟研究泡沫铝夹芯空心圆管在内爆载荷作用下的动态变形模式及吸能机制.采用不同质量的球形乳化炸药进行爆炸试验.结构轴向变形分为3个区:大塑性变形区、绕塑性铰的刚性旋转区和无变形区.在考虑环向膜力和轴向弯矩的情况下,提出内爆作用下夹芯圆管动态响应的显式计算方法.通过建立基于三维Voronoi算法的泡沫芯有限元模型,探索结构能量耗散机制.通过实验观测到的泡沫铝夹芯空心圆管在内爆载荷作用下的变形机制,结合内外管的弯曲变形及芯层压缩,给出了结构在响应过程中能量吸收的理论解.以结构比吸能和外管中心挠度为控制参量求得夹芯圆管的最优解集.进一步研究炸药质量、内外管直径、壁厚及芯层轴向梯度排列方式对结构动态变形模式和吸能机制的影响.结果表明:内管壁厚对外管中心线的挠度影响较大,而芯层厚度和外管壁厚的影响较小;如果夹芯圆管的轴向梯度结构从管轴向对称面到两端边缘呈对称递减分布时,具有较好的抗爆性;数值计算和实验测试结果均与理论预测吻合.  相似文献   

10.
采用弹道冲击摆系统开展了爆炸载荷下分层梯度泡沫铝夹芯板的变形/失效模式和抗冲击性能实验研究,并配合激光位移传感器得到试件后面板中心点的挠度-时程响应曲线。研究了炸药当量和芯层组合方式对夹芯板试件变形/失效模式和抗冲击性能的影响。实验结果表明,泡沫铝夹芯板的变形/失效模式主要表现为面板的非弹性大变形,芯层压缩变形、芯层拉伸断裂以及芯层剪切失效。在研究爆炸冲量范围内,非梯度芯层夹芯板的抗冲击性能明显优越于所有分层梯度芯层夹芯板。对于分层梯度夹芯板试件,爆炸冲量较小时芯层组合形式对分层梯度芯层夹芯板的抗冲击性能的影响不大,而爆炸冲量较大时,最大相对密度芯层靠近前面板组合形式的分层梯度夹芯板试件抗冲击性能较好。研究结果可为泡沫金属夹芯结构的优化设计提供参考。  相似文献   

11.
Sandwich composites are of interest in marine applications due to their high strength-to-weight ratio and tailorable mechanical properties, but their resistance to air blast loading is not well understood. Full-scale 100 kg TNT equivalent air blast testing at a 15 m stand-off distance was performed on glass-fibre reinforced polymer (GFRP) sandwich panels with polyvinyl chloride (PVC); polymethacrylimid (PMI); and styrene acrylonitrile (SAN) foam cores, all possessing the same thickness and density. Further testing was performed to assess the blast resistance of a sandwich panel containing a stepwise graded density SAN foam core, increasing in density away from the blast facing side. Finally a sandwich panel containing compliant polypropylene (PP) fibres within the GFRP front face-sheet, was subjected to blast loading with the intention of preventing front face-sheet cracking during blast. Measurements of the sandwich panel responses were made using high-speed digital image correlation (DIC), and post-blast damage was assessed by sectioning the sandwich panels and mapping the damage observed. It was concluded that all cores are effective in improving blast tolerance and that the SAN core was the most blast tolerant out of the three foam polymer types, with the DIC results showing a lower deflection measured during blast, and post-blast visual inspections showing less damage suffered. By grading the density of the core it was found that through thickness crack propagation was mitigated, as well as damage in the higher density foam layers, thus resulting in a smoother back face-sheet deflection profile. By incorporating compliant PP fibres into the front face-sheet, cracking was prevented in the GFRP, despite damage being present in the core and the interfaces between the core and face-sheets.  相似文献   

12.
An analytical model is developed to classify the impulsive response of sandwich beams based on the relative time-scales of core compression and the bending/stretching response of the sandwich beam. It is shown that an overlap in time scales leads to a coupled response and to the possibility of an enhanced shock resistance. Four regimes of behaviour are defined: decoupled responses with the sandwich core densifying partially or completely, and coupled responses with partial or full core densification. These regimes are marked on maps with axes chosen from the sandwich beam transverse core strength, the sandwich beam aspect ratio and the level of blast impulse. In addition to predicting the time-scales involved in the response of the sandwich beam, the analytical model is used to estimate the back face deflection, the degree of core compression and the magnitude of the support reactions. The predictions of the analytical model are compared with finite element (FE) simulations of impulsively loaded sandwich beams comprising an anisotropic foam core and elastic, ideally plastic face-sheets. The analytical and numerical predictions are in good agreement up to the end of core compression. However, the analytical model under-predicts the peak back face deflection and over-predicts the support reactions, especially for sandwich beams with high strength cores. The FE calculations are employed to construct design charts to select the optimum transverse core strength that either minimises the back face deflections or support reactions for a given sandwich beam aspect ratio or blast impulse. Typically, the value of the transverse core strength that minimises the back face deflection also minimises the support reactions. However, the optimal core strength depends on the level of blast impulse, with higher strength cores required for greater blasts.  相似文献   

13.
通过准静态四点弯曲试验对泡沫铝夹芯梁的弯曲力学性能进行了测试,研究了它的破坏过程、破坏形态和典型荷载-位移曲线,分析了芯层厚度和面层厚度等参数对其弯曲力学性能的影响。结果表明,泡沫铝夹芯梁四点弯曲破坏过程历经三个阶段,呈现三种失效模式:整体弯曲破坏、局部屈曲破坏以及整体屈曲破坏;芯层厚度和面层厚度对夹芯梁的弯曲承载力和吸能效果有明显影响;在本试验参数范围内,芯层厚度为25mm,面层厚度为0.4mm时,夹芯梁具有最优弯曲力学性能。  相似文献   

14.
Study on the Collapse of Pin-Reinforced Foam Sandwich Panel Cores   总被引:9,自引:0,他引:9  
New fabrication technologies now allow for hybrid sandwich structures, known as X-core, to be manufactured. The X-core panels consist of a pin reinforced polymer foam core with carbon fiber face sheets. Carbon fiber or metallic (Titanium/Steel) pins are inserted into the foam core in the out-of-plane direction and extend from face sheet to face sheet. The through thickness three-point simply supported bending behavior of these panels is used to evaluate the collapse characteristics of the panels. Explicit experimental observations are used to calibrate analytical energy balance models describing the panel collapse as a function of geometry and properties. The mechanical response of X-core sandwich panels is compared to current sandwich materials for material selection.  相似文献   

15.
Test method for measuring strength of a curved sandwich beam   总被引:1,自引:0,他引:1  
A fixture for testing curved sandwich beams in flexure was designed and evaluated. The test specimen is a continuous sandwich beam consisting of a central circular 90° region connected by two straight legs. The fixture was designed according to the four-point flexure principle to produce a pure bending moment in the curved region. The validity of the test fixture in producing the desired loading was examined by fitting a curved aluminum bar of similar bending stiffness as the sandwich beams considered. Strain gage readings were successfully compared to predictions from curved homogeneous beam theory. In addition, the deflection of the beam at the loading points was analyzed using straight and curved beam theory for the various sections of the beam, and predictions were compared to measured load-displacement response. Good agreement was achieved between experimental and analytical results lending confidence to the test principle. Curved sandwich beams consisting of glass/polyester face sheets over a PVC foam core were tested to failure and the loading response of the beams and their failure behavior are discussed. It was found that the beams failed at the upper face/core interface due to radial tension stress.  相似文献   

16.
Finite element (FE) calculations are used to develop a comprehensive understanding of the dynamic response of sandwich beams subjected to underwater blast loading, including the effects of fluid–structure interaction. Design maps are constructed to show the regimes of behaviour over a broad range of loading intensity, sandwich panel geometry and material strength. Over the entire range of parameters investigated, the time-scale associated with the initial fluid–structure interaction phase up to the instant of first cavitation in the fluid is much smaller than the time-scales associated with the core compression and the bending/stretching responses of the sandwich beam. Consequently, this initial fluid–structure interaction phase decouples from the subsequent phases of response. Four regimes of behaviour exist: the period of sandwich core compression either couples or decouples with the period of the beam bending, and the core either densifies partially or fully. These regimes of behaviour are charted on maps using axes of blast impulse and core strength. The simulations indicate that continued loading by the fluid during the core compression phase and the beam bending/stretching phase cannot be neglected. Consequently, analyses that neglect full fluid–structure interaction during the structural responses provide only estimates of performance metrics such as back face deflection and reaction forces at the supports. The calculations here also indicate that appropriately designed sandwich beams undergo significantly smaller back face deflections and exert smaller support forces than monolithic beams of equal mass. The optimum transverse core strength is determined for minimizing the back face deflection or support reactions at a given blast impulse. Typically, the transverse core strength that minimizes back face deflection is 40% below the value that minimizes the support reaction. Moreover, the optimal core strength depends upon the level of blast impulse, with higher strength cores required for higher intensity blasts.  相似文献   

17.
Sandwich panels and beams are used in bending and compression dominated components. The retention of their load capacity in the presence of imperfections is a central consideration. To address this issue, sandwich beams with metallic foam cores have been tested in four-point bending following the introduction of imperfections, created by impressing the face sheets. Limit load expressions for face yielding, core shear, and indentation failure have been developed and used to construct failure mechanism maps. From these maps, specimen designs were determined. Imperfections were introduced by indenting to varying penetrations. The indents were located on both the compressive and tensile side of bending configurations. Experimental measurements of the load/deflection response are obtained and compared with finite element results.  相似文献   

18.
The mechanical response and fracture of metal sandwich panels subjected to multiple impulsive pressure loads (shocks) were investigated for panels with honeycomb and folded plate core constructions. The structural performance of panels with specific core configurations under multiple impulsive pressure loads is quantified by the maximum transverse deflection of the face sheets and the core crushing strain at mid-span of the panels. A limited set of simulations was carried out to find the optimum core density of a square honeycomb core sandwich panels under two shocks. The panels with a relative core density of 4%–5% are shown to have minimum face sheet deflection for the loading conditions considered here. This was consistent with the findings related to the sandwich panel response subjected to a single intense shock. Comparison of these results showed that optimized sandwich panels outperform solid plates under shock loading. An empirical method for prediction of the deflection and fracture of sandwich panels under two consecutive shocks – based on finding an effective peak over-pressure – was provided. Moreover, a limited number of simulations related to response and fracture of sandwich panels under multiple shocks with different material properties were performed to highlight the role of metal strength and ductility. In this set of simulations, square honeycomb sandwich panels made of four steels representing a relatively wide range of strength, strain hardening and ductility values were studied. For panels clamped at their edge, the observed failure mechanisms are core failure, top face failure and tearing at or close to the clamped edge. Failure diagrams for sandwich panels were constructed which reveal the fracture and failure mechanisms under various shock intensities for panels subjected to up to three consecutive shocks. The results complement previous studies on the behavior and fracture of these panels under high intensity dynamic loading and further highlights the potential of these panels for development of threat-resistant structural systems.  相似文献   

19.
An analytical model is developed for the response of clamped monolithic and sandwich beams subjected to impulse loading over a central loading patch. A number of topologies of sandwich core are investigated, including the honeycomb core, pyramidal core, prismatic diamond core and metal foam. The various cores are characterised by their dependencies of through-thickness compressive strength and longitudinal tensile strength upon relative density. Closed-form expressions are derived for the deflection of the beam when the ratio r of length of loading patch to the beam span exceeds 0.5. In contrast, an ordinary differential equation needs to be solved numerically for the choice r<0.5. Explicit finite element calculations show that most practical shock loadings can be treated as impulsive and the accuracy of the impulsive analytical predictions is confirmed. The analytical formulae are employed to determine optimal geometries of the sandwich beams that maximise the shock resistance of the beams for a given mass. The optimisation reveals that sandwich beams have a superior shock resistance relative to monolithic beams of the same mass, with the prismatic diamond core sandwich beam providing the best performance. Further, the optimal sandwich beam designs are only mildly sensitive to the length of the loading patch.  相似文献   

20.
Nonlinear behavior of composite sandwich beams in three-point bending   总被引:1,自引:0,他引:1  
The load-deflection behavior of a composite sandwich beam in three-point bending was investigated. The beam was made of unidirectional carbon/epoxy facings and a polyvinyl chloride closed-cell foam core. The load-deflection curves were plotted up to the point of failure initiation. They consist of an initial linear part followed by a nonlinear portion. A nonlinear mechanics of materials analysis that accounts for the combined effect of the nonlinear behavior of the facings and core materials (material nonlinearity) and the large deflections of the beam (geometric nonlinearity) was developed. The theoretical predictions were in good agreement with the experimental results. It was found that the effect of material nonlinearity on the deflection of the beam is more pronounced for shear-dominated core failures in the case of short span lengths. It is due to the nonlinear shear stress-strain behavior of the core. For long span lengths, the observed nonlinearity is small and is attributed to the combined effect of the facings nonlinear stress-strain behavior and the large deflections of the beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号